1. Use linear approximation to estimate the values of
 \(\sqrt{10} \) \(\ln(1.1) \) \(\sin \left(\frac{\pi}{4} + 0.01 \right) \)

2. Use Newton’s method to estimate the root \(x^* \) of \(f(x) = -x^3 - 2x^2 + 1 \)
 in the interval \(I = [0, 1] \) to five decimal places of accuracy.

3. Use Newton’s method to estimate the value of \(e \) to three decimal places
 of accuracy. [\textbf{Hint:} Consider taking the natural log of \(x = e \).]

4. Find a point \(c \in I \) within the given interval \(I = [a, b] \) for which the
 instantaneous rate of change at \(c \), \(f'(c) \), is equal to the average rate of
 change over the interval, \(\frac{f(b) - f(a)}{b - a} \).
 \(a) f(x) = 2\sqrt{x} \) over the interval \(I = [1, 4], \)
(b) \(f(x) = \frac{1}{1 + x} \) over the interval \(I = [0, 1] \), and

(c) \(f(x) = \sqrt{4 - x^2} \) over the interval \(I = [0, 2] \).

5. Show that if \(f(x) \) is a parabola defined over the interval \(I = [a, b] \) then the point \(c \in (a, b) \) guaranteed by the Mean Value Theorem is always the midpoint, i.e. \(c = \frac{a + b}{2} \).

6. Use L’Hôpital’s rule (if applicable) to evaluate the following limits:

(a) \(\lim_{x \to 0} x[\ln(x)]^2 \)

(b) \(\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{x} \)

(c) \(\lim_{t \to 0} \frac{\sin(kt)}{t} \), \(k \neq 0 \)

(d) \(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \).

7. L’Hôpital’s rule can be used to determine which classes of functions grow faster than others. That to say, it can resolve the question of whether \(f(x) > g(x) \) for large \(x \) or \(g(x) > f(x) \) for large \(x \). Consider the functional classes of polynomials \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) and exponentials \(g(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_0 \) where \(a_0, \ldots, a_n, b_0, \ldots, b_n, \) and \(n \) are fixed values. Which class of functions grows faster, polynomials or exponentials?

[**Hint:** Consider what happens in the limit \(\lim_{x \to \infty} \frac{f(x)}{g(x)} \).]