1. Find the general solution of $\frac{dy}{dx} = \frac{1}{(1 - 4x^2)}$.

Solution: We have

$$\frac{dy}{dx} = \frac{1}{(1 - 4x^2)} = \frac{1}{(1 - 2x)(1 + 2x)} \implies \int 1 \, dy = \int \frac{1}{(1 - 2x)(1 + 2x)} \, dx.$$

To solve the right-hand side integral, we use the substitution $u = 1 + 2x$. This gives $du = 2 \, dx$ and $1 - 2x = u - 4x = u - 2(u - 1) = 2 - u$. We have

$$\int \frac{1}{(1 - 2x)(1 + 2x)} \, dx = \int \frac{1}{2u(2 - u)} \, du.$$

We can expand this using partial fractions to get

$$\frac{1}{u(2 - u)} = \frac{A}{u} + \frac{B}{2 - u} \implies 1 = A(2 - u) + Bu.$$

Setting $u = 0$ gives $A = 1/2$ and setting $u = 2$ gives $B = 1/2$. So we have

$$\int \frac{1}{2u(2 - u)} \, du = \int \left[\frac{1}{4u} + \frac{1}{4(2 - u)} \right] \, du = \frac{1}{4} \ln(u) - \frac{1}{4} \ln(2 - u) + C = \frac{1}{4} \ln \left(\frac{u}{2 - u} \right) + C = \frac{1}{4} \ln \left(\frac{1 + 2x}{1 - 2x} \right) + C.$$

Consequently, the general solution is

$$y(x) = \frac{1}{4} \ln \left(\frac{1 + 2x}{1 - 2x} \right) + C.$$

2. Solve the initial value problem $\frac{dy}{dx} = \frac{1 - y^3}{xy^2}$, $y(0) = 0$.

Solution: We have
\[\frac{dy}{dx} = \frac{1 - y^3}{xy^2} \]
\[\Rightarrow \int \frac{y^2}{1 - y^3} \, dy = \int \frac{1}{x} \, dx \]
\[\Rightarrow -\frac{1}{3} \ln(1 - y^3) = \ln(x) + C. \]
The initial condition \(y(1) = 0 \) implies \(-1/3) \ln(1) = \ln(1) + C \) which implies \(C = 0 \).
We have
\[-\frac{1}{3} \ln(1 - y^3) = \ln(x) \]
\[\Rightarrow \ln \left(\frac{1}{\sqrt[3]{1 - y^3}} \right) = \ln(x) \]
\[\Rightarrow \sqrt[3]{1 - y^3} = \frac{1}{x} \]
\[\Rightarrow 1 - y^3 = \frac{1}{x^3} \]
\[\Rightarrow y(x) = 3 \sqrt[3]{x^3 - 1} = \frac{1}{x} \sqrt[3]{x^3 - 1}. \]

3. Show that \(y(x) = e^{-x}(\cos(x) + \sin(x)) \) is a solution of \(\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y = 0. \)

Solution: We need the following terms
\[
y(x) = e^{-x}(\cos(x) + \sin(x))
\]
\[
y'(x) = -e^{-x}(\cos(x) + \sin(x)) + e^{-x}(-\sin(x) + \cos(x))
\]
\[= -2e^{-x} \sin(x) \]
\[
y''(x) = 2e^{-x}(\sin(x) - \cos(x)).
\]
Plugging into the differential equation, we have
\[
\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y
\]
\[= 2e^{-x}(\sin(x) - \cos(x)) - 4e^{-x} \sin(x) + 2e^{-x}(\cos(x) + \sin(x)) \]
\[= e^{-x}(2 \sin(x) - 4 \sin(x) + 2 \sin(x) - 2 \cos(x) + 2 \cos(x)) \]
\[= 0. \]

4. Find the general solution of the differential equation \(\frac{dy}{dx} + \frac{y}{x} = \cos(x). \)
Solution: This is a linear first-order system, so we need to find an integrating factor. It is given by
\[\mu(x) = e^{\int (1/x) \, dx} = e^{\ln(x)} = x. \]

We multiply this across the differential equation to get
\[
x \frac{dy}{dx} + y = x \cos(x) \\
\Rightarrow \frac{d}{dx} [xy] = x \cos(x) \\
\Rightarrow xy = \int x \cos(x) \, dx \\
\Rightarrow x \sin(x) - \int \sin(x) \, dx \\
\Rightarrow y(x) = \sin(x) + \frac{\cos(x)}{x} + C.
\]

5. Solve the initial value problem \(\frac{d^2 y}{dx^2} + \frac{dy}{dx} = e^{-x}, \ y(0) = -1, \ y'(0) = -1. \)

Solution: This equation has the dependent variable \(y \) missing, so we set \(v = y' \) (which implies \(v' = y'' \)). We have
\[\frac{dv}{dx} + v = e^{-x}. \]

This is a linear first-order equation in \(v \), so we need to find the integrating factor. It is given by
\[\mu(x) = e^{\int 1 \, dx} = e^x. \]

We multiply across the equation by \(e^x \) to get
\[
e^x \frac{dv}{dx} + e^x v = 1 \\
\Rightarrow \frac{d}{dx} [e^x v] = 1 \\
\Rightarrow e^x v = x + C \\
\Rightarrow \frac{dy}{dx} = v = xe^{-x} + Ce^{-x} \\
\Rightarrow y(x) = -xe^{-x} - e^{-x} - Ce^{-x} + D.
\]

The initial condition \(y'(0) = -1 \) can be applied to the \(\frac{dy}{dx} \) expression to give \(-1 = (0)e^0 + Ce^0 \Rightarrow C = -1. \) This simplifies the solution to
\[y(x) = -xe^{-x} + D. \]
The condition \(y(0) = -1 \) implies

\[-1 = -(0)e^0 + D \implies D = 0 \]

so that we have

\[y(x) = -xe^{-x}. \]

6. Solve the initial value problem

\[\frac{d^2y}{dx^2} e^y - \frac{dy}{dx} = 0, \quad y(0) = 0, \quad y'(0) = -1. \]

(Hint: Use the initial conditions simultaneously to solve for the first constant of integration.)

Solution: This equation has the independent variable \(x \) missing, so we set \(v = y' \) (which implies \(y'' = vv' \), where the \(v \) derivative is with respect to \(y \)). We have

\[
\frac{d^2y}{dx^2} e^y - \frac{dy}{dx} = 0
\]

\[\implies v \frac{dv}{dy} e^y = v
\]

\[\implies \int 1 \, dv = \int e^{-y} \, dy
\]

\[\implies \frac{dy}{dx} = v = -e^{-y} + C.
\]

Integrating this directly is very difficult with the constant \(C \) there—however, we can solve for \(C \) by noticing that at \(x = 0 \) both \(y(x) \) and \(y'(x) \) are solved for! The conditions \(y(0) = 0 \) and \(y'(0) = -1 \) give the equation

\[-1 = -(0)e^0 + C \]

which implies \(C = 0 \). This simplifies our integration significantly. We now have

\[\frac{dy}{dx} = -e^{-y}
\]

\[\implies \int e^y \, dy = - \int 1 \, dx
\]

\[\implies e^y = x + C.
\]

The condition \(y(0) = 0 \) implies \(e^0 = (0) + C \) so that \(C = 1 \). Our solution is therefore given by

\[y(x) = \ln(1 - x).
\]

7. (a) Solve the system of differential equations

\[
\frac{dx}{dt} = -kx, \quad \frac{dy}{dt} = kx, \quad x(0) = 1, \quad y(0) = 0.
\]

(Hint: Since the first equation depends only on \(x \), solve it first.)

(b) Under suitable laboratory conditions, this models the time evolution of the reaction

\[A \xrightarrow{k} B \]
where \(x = [A] \) and \(y = [B] \) are concentrations of the two chemical reactants and \(A \) is present initially while \(B \) is not. Plot the solutions and briefly explain what happens to the chemicals as time passes (take \(k = 1 \), if it helps).

Solution (a): The first equation is separable in \(x \) and \(t \). We obtain

\[
\frac{dx}{x} = -k \, dt
\]

\[
\Rightarrow \quad \int \frac{dx}{x} = - \int k \, dt
\]

\[
\Rightarrow \quad \ln(x) = -kt + C
\]

\[
\Rightarrow \quad x(t) = e^C e^{-kt}.
\]

The initial condition \(x(0) = 1 \) implies \(e^C = 1 \) so that we have

\[
x(t) = e^{-kt}.
\]

We plug this into the second equation to get

\[
\frac{dy}{dt} = kx = ke^{-kt}
\]

\[
\Rightarrow \quad \int 1 \, dy = k \int e^{-kt} \, dt
\]

\[
\Rightarrow \quad y(t) = -e^{-kt} + D.
\]

The initial condition \(y(0) = 0 \) implies \(y(0) = 0 = -1 + D \) which implies \(D = 1 \). We have

\[
y(t) = 1 - e^{-kt}.
\]

Solution (b): The plot is given below (see Figure 1). It can be clearly seen that as the reaction proceeds, the species \(A \) is used up and replaced by \(B \), as we would expect from simply looking at the reaction. The concentration of \(B \) approaches the initial concentration of the species \(A \).
Figure 1: The solutions $x(t) = e^{-kt}$ and $y(t) = 1 - e^{-kt}$ with $k = 1$.