Problems for submission:

1. Prove that $P \implies Q$ is equivalent to $\neg Q \implies \neg P$. That is to say, prove that

 $$(P \implies Q) \iff (\neg Q \implies \neg P).$$

2. State the negation of the following statements (fully simplified!):

 (a) $\exists M > 0$, s.t. $\forall x \in \mathbb{R}, f(x) < M$

 (b) $\exists L \in \mathbb{R}$, s.t. $\forall \epsilon > 0, \exists M > 0$, s.t. $\forall x \in \mathbb{R}$,
 $x > M \implies |f(x) - L| < \epsilon$

3. Suppose $A, B, C \subseteq X$ where X is some universal set. Prove the following set identities:

 (a) $A \cap B = (A^c \cup B^c)^c$

 (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 (c) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$

4. A positive integer p is called a prime number if it is greater than 1 and the only whole divisors are 1 and p itself. It can be easily checked that, up to the first ten such numbers, the set P of prime numbers is given by

 $$P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots\}.$$

 Prove that \sqrt{p} is an irrational number for any prime number p. (Hint: You may use the fact that if n^2 is divisible by p for any prime, then n is divisible by p.)

5. Consider the following statement

 $$P = \text{“Every prime number greater than 2 is an odd number.”}$$

 (a) Restate P (in words) in the form “If _____ and _____ then _____”.

 (b) State the contrapositive of P. Is this statement true? (Either prove it or provide a counter example.)
(c) State the converse of P. Is this statement true? (Either prove it or provide a counter example.)

6. Prove that the sequence $\{a_1, a_2, a_3, \ldots \}$ defined by

$$a_1 = 15, \quad a_{n+1} = 1 + \sqrt{1 + a_n}, \quad n \geq 1$$

has the following properties:

(a) $a_n > 3$ for all $n \geq 1$; and
(b) $a_{n+1} < a_n$ for all $n \geq 1$.

Honors Question In addition to being able to write correct proofs, it is also important to be able to identify false proofs and why they fail. For example, consider the following:

Claim: $\sqrt{4}$ is an irrational number

False Proof: Suppose otherwise. This implies that $\sqrt{4} = m/n$ where $m, n \in \mathbb{Z}$ and m and n may be selected to have no common factors. It follows that $4n^2 = m^2$. We therefore have that m^2, and therefore m, is divisible by 4. It follows that $m = 4k$ for some $k \in \mathbb{Z}$. We therefore have that $4n^2 = (4k)^2 \implies 4n^2 = 16k^2 \implies n^2 = 4k^2$. It follows that n^2, and therefore n itself, is divisible by 4. This, however, contradicts the assumption that m and n have no common factors. It follows that our assumption was incorrect, and therefore that $\sqrt{4}$ is an irrational number.

This result, of course, is not correct, since we know that $\sqrt{4} = 2$, which is clearly a rational number. Identify the mistake in the above argument and explain why it is false.