Consider two chemical reaction networks \(\mathcal{N} \) and \(\mathcal{N}' \) endowed with mass-action kinetics and let \(\Psi(x, t) \) denote the flow associated with \(\mathcal{N} \) and \(\Psi'(y, t) \) denote the flow associated with \(\mathcal{N}' \). We will say \(\mathcal{N} \) and \(\mathcal{N}' \) are linearly conjugate if there exists a linear mapping \(h : \mathbb{R}^n \rightarrow \mathbb{R}^m \) such that
\[
\Psi'(h(x), t) = \Psi(h(x), t) \quad \text{for all } x \in \mathbb{R}^n.
\]
Linearly conjugate reaction networks are important because they share many of the same qualitative dynamics even if their reaction graphs are different.

Example

Deficiency Three

Consider a network of binary interactions between singulary-bound enzymes with three binding sites:

This network has a deficiency of three and can exhibit a variety of dynamical behaviours, including multiple positive equilibrium states.

Deficiency Two

Now choose the rate constants flowing into each complex to be the same. The original network is then linearly conjugate to the following:

This network has a deficiency of two and can be found very quickly using the introduced MILP algorithm.

Deficiency One

If we choose the rate constants flowing from each complex to be the same, the original network is linearly conjugate to the following:

This network has a deficiency of one and it can be shown by deficiency one algorithms to exhibit at most one positive equilibrium state.

References