Stochastic Chemical Reaction Networks

Matthew Douglas Johnston
University of Waterloo

October 26, 2012
1 Background

- Chemical Reactions
- Standard Model
- Stoichiometric Compatibility Classes
1 Background
 - Chemical Reactions
 - Standard Model
 - Stoichiometric Compatibility Classes

2 Stochastic Models
 - Small-Scale Considerations
 - Gillespie Algorithm
 - Chemical Master Equation
1 Background
 - Chemical Reactions
 - Standard Model
 - Stoichiometric Compatibility Classes

2 Stochastic Models
 - Small-Scale Considerations
 - Gillespie Algorithm
 - Chemical Master Equation

3 Interesting Systems
 - Lotka-Volterra System
 - The Block
1 Background
- Chemical Reactions
- Standard Model
- Stoichiometric Compatibility Classes

2 Stochastic Models
- Small-Scale Considerations
- Gillespie Algorithm
- Chemical Master Equation

3 Interesting Systems
- Lotka-Volterra System
- The Block
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

$$2H_2 + O_2 \xrightarrow{k} 2H_2O$$
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \xrightarrow{k} 2\text{H}_2\text{O} \]

Species/Reactants
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2\text{H}_2 + \text{O}_2 \xrightarrow{k} 2\text{H}_2\text{O} \]

Reactant Complex
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2H_2 + O_2 \xrightarrow{k} 2H_2O \]

Product Complex
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

$$2H_2 + O_2 \xrightarrow{k} 2H_2O$$

Reaction Constant
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2H_2 + O_2 \xrightarrow[k]{} 2H_2O \]

Chemical kinetics is the study of the rates/dynamics resulting from systems of such reactions.
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

$$2H_2 + O_2 \xrightarrow{k} 2H_2O$$

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.

To build a mathematical model, we need to make physical assumptions.
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2H_2 + O_2 \xrightarrow{k} 2H_2O \]

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.

To build a mathematical model, we need to make physical assumptions, e.g.

- Uniform distribution (well-mixed);
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2H_2 + O_2 \xrightarrow{k} 2H_2O \]

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.

To build a mathematical model, we need to make physical assumptions, e.g.

- Uniform distribution (well-mixed);
- Temperature and volume are constant;
An elementary reaction consists of a set of reactants which turn into a set of products, e.g.

\[2H_2 + O_2 \xrightarrow{k} 2H_2O \]

Chemical kinetics is the study of the *rates/dynamics* resulting from systems of such reactions.

To build a mathematical model, we need to make physical assumptions, e.g.

- Uniform distribution (well-mixed);
- Temperature and volume are constant;
- Law of mass action applies.
If many reactant molecules are involved (e.g. chemical reactor), we consider the reactant *concentrations.*
If many reactant molecules are involved (e.g. chemical reactor), we consider the reactant *concentrations*.

We will keep track of

\[
x_i \approx \frac{n_i}{V} = \frac{\text{# of molecules of } i^{th} \text{ species}}{\text{Volume}}.
\]
If many reactant molecules are involved (e.g. chemical reactor), we consider the reactant *concentrations*.

We will keep track of

$$x_i \approx \frac{n_i}{V} = \frac{\# \text{ of molecules of } i^{th} \text{ species}}{\text{Volume}}.$$

The concentrations are approximately *continuous* with respect to each occurrence of a reaction.
If many reactant molecules are involved (e.g. chemical reactor), we consider the reactant *concentrations*.

We will keep track of

\[x_i \approx \frac{n_i}{V} = \frac{\# \text{ of molecules of } i^{th} \text{ species}}{\text{Volume}}. \]

The concentrations are approximately *continuous* with respect to each occurrence of a reaction.

The reaction constant \(k \) represents the *average occurrence rate* of the reaction per time.
Consider the general system

\[C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r. \]
Consider the general system

\[C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r. \]

This system is governed by the system of autonomous, polynomial, ordinary differential equations

\[
\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i}.
\]

(1)
Consider the general system

\[C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r. \]

This system is governed by the system of autonomous, polynomial, ordinary differential equations

\[\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i}. \quad (1) \]

We have the following important components:

- we sum over \(r \) reactions,
Consider the general system

\[C_i \xrightarrow{k_i} C_i', \quad i = 1, \ldots, r. \]

This system is governed by the system of autonomous, polynomial, ordinary differential equations

\[\dot{x} = \sum_{i=1}^{r} k_i (z_i' - z_i)x^{z_i}. \] (1)

We have the following important components:

- we sum over \(r \) reactions,
- \(k_i \) is the reaction rate,
Consider the general system

\[C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r. \]

This system is governed by the system of autonomous, polynomial, ordinary differential equations

\[
\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i}. \tag{1}
\]

We have the following important components:

- we sum over \(r \) reactions,
- \(k_i \) is the reaction rate,
- \((z'_i - z_i)\) is the reaction vector,
Consider the general system

\[C_i \xrightarrow{k_i} C'_i, \quad i = 1, \ldots, r. \]

This system is governed by the system of autonomous, polynomial, ordinary differential equations

\[
\dot{x} = \sum_{i=1}^{r} k_i (z'_i - z_i) x^{z_i}.
\]

(1)

We have the following important components:

- we sum over \(r \) reactions,
- \(k_i \) is the reaction rate,
- \((z'_i - z_i) \) is the reaction vector, and
- \(x^{z_i} = \prod_{j=1}^{m} (x_j)^{z_{ij}} \) is the mass-action term.
Consider the (reversible) system

\[A_1 \xleftrightarrow{\kappa_1} 2A_2. \]
Consider the (reversible) system

\[A_1 \xleftrightarrow{k_1}{k_2} 2A_2. \]

This has the governing dynamics

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2,
\]

where \(x_1 \) and \(x_2 \) are the concentrations of \(A_1 \) and \(A_2 \) respectively.
Consider the (reversible) system

\[\mathcal{A}_1 \xrightleftharpoons[2k]{k_1} 2\mathcal{A}_2. \]

This has the governing dynamics

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\ 2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\ -2
\end{bmatrix} x_2^2,
\]

where \(x_1 \) and \(x_2 \) are the concentrations of \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) respectively.
Consider the (reversible) system

\[
A_1 \underset{k_2}{\overset{k_1}{\rightleftharpoons}} 2A_2.
\]

This has the governing dynamics

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2,
\]

where \(x_1 \) and \(x_2 \) are the concentrations of \(A_1 \) and \(A_2 \) respectively.
Consider the (reversible) system

\[A_1 \xrightleftharpoons[k_2]{k_1} 2A_2. \]

This has the governing dynamics

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2,
\]

where \(x_1 \) and \(x_2 \) are the concentrations of \(A_1 \) and \(A_2 \) respectively.
Consider the (reversible) system

\[A_1 \xleftrightarrow{k_1}{k_2} 2A_2. \]

This has the governing dynamics

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2,
\]

where \(x_1 \) and \(x_2 \) are the concentrations of \(A_1 \) and \(A_2 \) respectively.
What kind of properties does this system have?

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2
\]
What kind of properties does this system have?

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2
\]

The (positive) equilibrium set is given by

\[
E = \left\{ x \in \mathbb{R}^2_+ \mid x_2 = \sqrt{\frac{k_1}{k_2}} x_1 \right\}.
\]
What kind of properties does this system have?

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = k_1 \begin{bmatrix}
-1 \\
2
\end{bmatrix} x_1 + k_2 \begin{bmatrix}
1 \\
-2
\end{bmatrix} x_2^2
\]

The (positive) equilibrium set is given by

\[
E = \left\{ x \in \mathbb{R}^2_+ \mid x_2 = \sqrt{\frac{k_1}{k_2}} x_1 \right\}.
\]

For any \(k_1, k_2, x_1, x_2 \) we have \(f(x) \in S \) where

\[
S = \text{span} \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}.
\]
Figure: Previous system with $k_1 = k_2 = 1$.
Figure: Previous system with $k_1 = k_2 = 1$.
Figure: Previous system with $k_1 = k_2 = 1$.
The restriction of solutions is a general property.
The restriction of solutions is a general property.

Definition

The **stoichiometric subspace** $S \subset \mathbb{R}^m$ is given by

$$S = \text{span} \left\{ z'_i - z_i \mid i = 1, \ldots, r \right\}.$$
The restriction of solutions is a general property.

Definition

The stoichiometric subspace \(S \subset \mathbb{R}^m \) is given by

\[
S = \text{span} \left\{ z'_i - z_i \mid i = 1, \ldots, r \right\}.
\]

Theorem

Solutions \(x(t) \) of (1) are restricted to stoichiometric compatibility classes such that

\[
x(t) \in (S + x_0) \cap \mathbb{R}_+^m \quad \forall t \geq 0.
\]
1 Background
- Chemical Reactions
- Standard Model
- Stoichiometric Compatibility Classes

2 Stochastic Models
- Small-Scale Considerations
- Gillespie Algorithm
- Chemical Master Equation

3 Interesting Systems
- Lotka-Volterra System
- The Block
What about cases where the number of reactant molecules n_i is small (e.g. biological cells)?
What about cases where the number of reactant molecules n_i is small (e.g. biological cells)?

A few considerations:

- Differences between states is *large* - i.e. continuity of concentrations breaks down.
What about cases where the number of reactant molecules n_i is small (e.g. biological cells)?

A few considerations:

- Differences between states is *large* - i.e. continuity of concentrations breaks down.
- Each occurrence of a reaction matters - i.e. we cannot average into a lump parameter k_i.
What about cases where the number of reactant molecules n_i is small (e.g. biological cells)?

A few considerations:

- Differences between states is *large* - i.e. continuity of concentrations breaks down.
- Each occurrence of a reaction matters - i.e. we cannot average into a lump parameter k_i.
- We cannot tell when reactions will occur - i.e. the model is *stochastic/probabilistic* instead of deterministic.
There are two general approaches to analyzing purely stochastic chemical kinetics systems:

1. Evaluating sample trajectories/realizations.
2. Analyzing the chemical master equation (models the probability distribution over the admissible states as a function of time).

Evaluating sample trajectories is simple to do numerically but not particularly insightful. Solving the chemical master equation is typically several orders of magnitude beyond impossible.
There are two general approaches to analyzing purely stochastic chemical kinetics systems:

1. Evaluating sample trajectories/realizations.
There are two general approaches to analyzing purely stochastic chemical kinetics systems:

1. Evaluating sample trajectories/realizations.
2. Analyzing the chemical master equation (models the probability distribution over the admissible states as a function of time).
There are two general approaches to analyzing purely stochastic chemical kinetics systems:

1. Evaluating sample trajectories/realizations.
2. Analyzing the chemical master equation (models the probability distribution over the admissible states as a function of time).

Evaluating sample trajectories is simple to do numerically but not particularly insightful.
There are two general approaches to analyzing purely stochastic chemical kinetics systems:

1. Evaluating sample trajectories/realizations.
2. Analyzing the chemical master equation (models the probability distribution over the admissible states as a function of time).

Evaluating sample trajectories is simple to do numerically but not particularly insightful.

Solving the chemical master equation is typically several orders of magnitude beyond impossible.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers $n_i(0)$.
2. Determine time τ until next reaction.
3. Determine next reaction.
4. Step forward τ, update system and return to step 2.

Typically carried out for a finite number of iterations or for a fixed amount of time.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers $n_i(0)$.

2. Determine time τ until next reaction.
3. Determine next reaction.
4. Step forward τ, update system and return to step 2.

Typically carried out for a finite number of iterations or for a fixed amount of time.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers $n_i(0)$.
2. Determine time τ until next reaction.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers \(n_i(0) \).
2. Determine time \(\tau \) until next reaction.
3. Determine next reaction.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers $n_i(0)$.
2. Determine time τ until next reaction.
3. Determine next reaction.
4. Step forward τ, update system and return to step 2.
An algorithm for evaluating sample trajectories was developed by Doob (1945) and Gillespie (1977) [1]:

1. Initialize reactant numbers $n_i(0)$.
2. Determine time τ until next reaction.
3. Determine next reaction.
4. Step forward τ, update system and return to step 2.

Typically carried out for a finite number of iterations or for a fixed amount of time.
Consider the Michaelis-Menten enzyme reaction

\[S + E \overset{k_1^+}{\rightleftharpoons} SE \overset{k_2}{\rightarrow} P + E \]

Models the conversion of some substrate S into some product P via the enzyme E. The deterministic model is a limiting case for $n_i \rightarrow \infty$ keeping n_i / V constant.
Consider the Michaelis-Menton enzyme reaction

\[S + E \xrightleftharpoons{\kak}{\kak} SE \xrightarrow{\kak} P + E \]

Models the conversion of some substrate \(S \) into some product \(P \) via the enzyme \(E \).
Consider the Michaelis-Menten enzyme reaction

\[
S + E \xleftrightarrow{k_1^{-}} SE \xrightarrow{k_2} P + E
\]

Models the conversion of some substrate S into some product P via the enzyme E.

The deterministic model is a limiting case for $n_i \rightarrow \infty$ keeping n_i/V constant.
Figure: Comparison of deterministic and stochastic Michaelis-Menten enzyme mechanism (S = red, E = blue, SE = green, P = yellow).
Figure: Comparison of deterministic and stochastic Michaelis-Menten enzyme mechanism (S = red, E = blue, SE = green, P = yellow).
Figure: Comparison of deterministic and stochastic Michaelis-Menten enzyme mechanism (S = red, E = blue, SE = green, P = yellow).
Figure: Comparison of deterministic and stochastic Michaelis-Menten enzyme mechanism (S = red, E = blue, SE = green, P = yellow).
Evaluating sample trajectories is illustrative but not particularly enlightening.
Evaluating sample trajectories is illustrative but not particularly enlightening.

We are typically interested in questions such as:

1. What is the probability that $X_i = n_i$, $X_i \geq n_i$, etc., at time t?

2. Does the system have steady states?

If we sample enough trajectories we can build curves of best fit and confidence intervals but we will still miss many details.

We can do better - in fact, we can model the evolution of these probabilities explicitly!
Evaluating sample trajectories is illustrative but not particularly enlightening.

We are typically interested in questions such as:

1. What is the probability that $X_i = n_i$, $X_i \geq n_i$, etc., at time t?
Evaluating sample trajectories is illustrative but not particularly enlightening.

We are typically interested in questions such as:

1. What is the probability that $X_i = n_i$, $X_i \geq n_i$, etc., at time t?
2. Does the system have steady states?
Evaluating sample trajectories is illustrative but not particularly enlightening.

We are typically interested in questions such as:

1. What is the probability that $X_i = n_i$, $X_i \geq n_i$, etc., at time t?
2. Does the system have steady states?

If we sample enough trajectories we can build curves of best fit and confidence intervals but we will still miss many details.
Evaluating sample trajectories is illustrative but not particularly enlightening.

We are typically interested in questions such as:

1. What is the probability that $X_i = n_i$, $X_i \geq n_i$, etc., at time t?
2. Does the system have steady states?

If we sample enough trajectories we can build curves of best fit and confidence intervals but we will still miss many details.

We can do better - in fact, we can model the evolution of these probabilities *explicitly*!
We will let $P(n; t) = P(X_1 = n_1, \ldots, X_m = n_m; t)$ and
\[
\lambda_i(n) = \frac{k_i}{\sqrt{|z_i| - 1}} \prod_{j=1}^{m} \frac{n_j!}{(n_j - z_{ij})!}
\]
denote the propensity function of i^{th} reaction at state n.
We will let $P(n; t) = P(X_1 = n_1, \ldots, X_m = n_m; t)$ and

$$
\lambda_i(n) = \frac{k_i}{\sqrt{|z_i| - 1}} \prod_{j=1}^{m} \frac{n_j!}{(n_j - z_{ij})!}
$$

denote the propensity function of i^{th} reaction at state n.

The chemical master equation is given by

$$
\frac{dP(n; t)}{dt} = \sum_{i \in I} \lambda_i(n + z_i - z'_i)P(n + z_i - z'_i; t) - P(n; t) \sum_{i \in O} \lambda_i(n)
$$
We will let $P(n; t) = P(X_1 = n_1, \ldots, X_m = n_m; t)$ and

$$\lambda_i(n) = \frac{k_i}{\sqrt{|z_i| - 1}} \prod_{j=1}^{m} \frac{n_j!}{(n_j - z_{ij})!}$$

denote the propensity function of i^{th} reaction at state n.

The chemical master equation is given by

$$\frac{dP(n; t)}{dt} = \sum_{i \in I} \lambda_i(n + z_i - z_i') P(n + z_i - z_i'; t) - P(n; t) \sum_{i \in O} \lambda_i(n)$$

where I are the reactions which lead into a given state...
We will let $P(n; t) = P(X_1 = n_1, \ldots, X_m = n_m; t)$ and

$$\lambda_i(n) = \frac{k_i}{\sqrt{|z_i|-1}} \prod_{j=1}^{m} \frac{n_j!}{(n_j - z_{ij})!}$$

denote the propensity function of i^{th} reaction at state n.

The chemical master equation is given by

$$\frac{dP(n; t)}{dt} = \sum_{i \in I} \lambda_i(n + z_i - z_i')P(n + z_i - z_i'; t) - P(n; t) \sum_{i \in O} \lambda_i(n)$$

where I are the reactions which lead into a given state and O are the reactions which lead from a given state.
Reconsider the earlier system

\[A_1 \xrightleftharpoons[k_2]{k_1} 2A_2. \]
Reconsider the earlier system

\[A_1 \xleftrightarrow{k_1}{k_2} 2A_2. \]

Consider the states \((2, 0), (1, 2), \) and \((0, 4)\)...
Reconsider the earlier system

\[A_1 \xleftrightarrow{k_1}{k_2} 2A_2. \]

Consider the states \((2, 0), (1, 2),\) and \((0, 4),\) for which we have

\[
\frac{dP(2, 0; t)}{dt} = \frac{2k_2}{V} P(1, 2; t) - 2k_1 P(2, 0; t)
\]

\[
\frac{dP(1, 2; t)}{dt} = \frac{12k_2}{V} P(0, 4; t) + 2k_1 P(2, 0; t) - \left(k_1 + \frac{2k_2}{V} \right) P(1, 2; t)
\]

\[
\frac{dP(0, 4; t)}{dt} = k_1 P(1, 2; t) - \frac{12k_2}{V} P(0, 4; t).
\]
Reconsider the earlier system

\[\mathcal{A}_1 \xleftrightarrow{k_1 \atop k_2} 2\mathcal{A}_2. \]

Consider the states (2, 0), (1, 2), and (0, 4), for which we have

\[
\frac{dP(2, 0; t)}{dt} = \frac{2k_2}{V} P(1, 2; t) - 2k_1 P(2, 0; t)
\]

\[
\frac{dP(1, 2; t)}{dt} = \frac{12k_2}{V} P(0, 4; t) + 2k_1 P(2, 0; t) - \left(k_1 + \frac{2k_2}{V} \right) P(1, 2; t)
\]

\[
\frac{dP(0, 4; t)}{dt} = k_1 P(1, 2; t) - \frac{12k_2}{V} P(0, 4; t).
\]

This can be solved explicitly!
Nice features about the CME:
Nice features about the CME:

1. It is *linear*!
Nice features about the CME:

1. It is *linear*!
2. If it can be solved, it completely describes every aspect of the mechanism.
Nice features about the CME:

1. It is *linear*!

2. If it can be solved, it completely describes every aspect of the mechanism.

Less-than-nice features about the CME:
Nice features about the CME:

1. It is *linear*!
2. If it can be solved, it completely describes every aspect of the mechanism.

Less-than-nice features about the CME:

1. It is typically *massive* (for unbounded systems, it is infinite-dimensional).
Nice features about the CME:

1. It is *linear*!
2. If it can be solved, it completely describes every aspect of the mechanism.

Less-than-nice features about the CME:

1. It is typically *massive* (for unbounded systems, it is infinite-dimensional).
2. Mass-action term must be computed for each state.
Nice features about the CME:

1. It is *linear*!
2. If it can be solved, it completely describes every aspect of the mechanism.

Less-than-nice features about the CME:

1. It is typically *massive* (for unbounded systems, it is infinite-dimensional).
2. Mass-action term must be computed for each state.
3. Connections between states can be complicated near the boundary.
1 Background
- Chemical Reactions
- Standard Model
- Stoichiometric Compatibility Classes

2 Stochastic Models
- Small-Scale Considerations
- Gillespie Algorithm
- Chemical Master Equation

3 Interesting Systems
- Lotka-Volterra System
- The Block
Modeling chemical kinetics systems stochastically can qualitatively change the dynamics of a system.
Modeling chemical kinetics systems stochastically can qualitatively change the dynamics of a system.

Consider the Lotka-Volterra predator-prey system (A_1 is the prey, A_2 is the predator)

$$A_1 \xrightarrow{k_1} 2A_1$$

$$A_1 + A_2 \xrightarrow{k_2} 2A_2$$

$$A_2 \xrightarrow{k_3} 0.$$
Modeling chemical kinetics systems stochastically can qualitatively change the dynamics of a system.

Consider the Lotka-Volterra predator-prey system (A_1 is the prey, A_2 is the predator)

1. $A_1 \xrightarrow{k_1} 2A_1$
2. $A_1 + A_2 \xrightarrow{k_2} 2A_2$
3. $A_2 \xrightarrow{k_3} O$.

1 First “reaction”: growth of prey
Modeling chemical kinetics systems stochastically can qualitatively change the dynamics of a system.

Consider the Lotka-Volterra predator-prey system (A_1 is the prey, A_2 is the predator)

$$
A_1 \xrightarrow{k_1} 2A_1 \\
A_1 + A_2 \xrightarrow{k_2} 2A_2 \\
A_2 \xrightarrow{k_3} O.
$$

1. First “reaction”: growth of prey
2. Second “reaction”: predator eats prey
Modeling chemical kinetics systems stochastically can qualitatively change the dynamics of a system.

Consider the Lotka-Volterra predator-prey system (A_1 is the prey, A_2 is the predator)

\[
\begin{align*}
A_1 & \xrightarrow{k_1} 2A_1 \\
A_1 + A_2 & \xrightarrow{k_2} 2A_2 \\
A_2 & \xrightarrow{k_3} O.
\end{align*}
\]

1. First “reaction”: growth of prey
2. Second “reaction”: predator eats prey
3. Third “reaction”: death of predator
For all positive rate constant values, this system has a unique positive steady state which is orbited by stable trajectories.
For all positive rate constant values, this system has a unique positive steady state which is orbited by stable trajectories.

For the corresponding stochastic system, however...
The stable equilibrium concentration is no longer stable! (In fact, none of the stable periodic orbits are stable.)
The stable equilibrium concentration is no longer stable! (In fact, none of the stable periodic orbits are stable.)

Oscillatory behaviour remains but appears almost *chaotic.*
The stable equilibrium concentration is no longer stable! (In fact, none of the stable periodic orbits are stable.)

Oscillatory behaviour remains but appears almost chaotic.

Furthermore, extinction events which were not possible in the continuous, deterministic system are now possible.
The stable equilibrium concentration is no longer stable! (In fact, none of the stable periodic orbits are stable.)

Oscillatory behaviour remains but appears almost *chaotic*.

Furthermore, extinction events which were not possible in the continuous, deterministic system are now possible.

Although it is unlikely for either the predator or the prey to go extinct, it is *irreversible* — carried over a long enough time scale, extinction is the inevitable outcome of the system!
Horn and Jackson consider the following system in their seminal paper “General Mass Action Kinetics” [2]:

\[
\begin{align*}
2A_1 + A_2 \overset{1}{\underset{\epsilon}{\rightarrow}} 3A_1 \\
\epsilon \uparrow & \quad \Downarrow \epsilon \\
3A_2 \overset{1}{\leftarrow} A_1 + 2A_2.
\end{align*}
\]
Horn and Jackson consider the following system in their seminal paper “General Mass Action Kinetics” [2]:

\[2A_1 + A_2 \xrightarrow{\epsilon} 3A_1 \]
\[3A_2 \xleftarrow{1} A_1 + 2A_2. \]

The system exhibits varying behaviour depending on the value of \(\epsilon \):
Horn and Jackson consider the following system in their seminal paper “General Mass Action Kinetics” [2]:

\[
\begin{align*}
2A_1 + A_2 & \xrightarrow{1} 3A_1 \\
3A_2 & \xleftarrow{1} A_1 + 2A_2.
\end{align*}
\]

The system exhibits varying behaviour depending on the value of \(\epsilon \):

1. \(\epsilon \geq 1/6 \): one stable equilibrium.
Horn and Jackson consider the following system in their seminal paper “General Mass Action Kinetics” [2]:

\[2A_1 + A_2 \xrightarrow{\epsilon \uparrow} 3A_1 \]
\[\epsilon \downarrow \]
\[3A_2 \xleftarrow{1} A_1 + 2A_2. \]

The system exhibits varying behaviour depending on the value of \(\epsilon \):

1. \(\epsilon \geq 1/6 \): one stable equilibrium.
2. \(0 < \epsilon < 1/6 \): two stable and one unstable equilibria.
Horn and Jackson consider the following system in their seminal paper “General Mass Action Kinetics” [2]:

\[
\begin{align*}
2A_1 + A_2 \xrightarrow{\epsilon \uparrow} 3A_1 \\
3A_2 \xleftarrow{1} A_1 + 2A_2.
\end{align*}
\]

The system exhibits varying behaviour depending on the value of \(\epsilon \):

1. \(\epsilon \geq 1/6 \): one stable equilibrium.
2. \(0 < \epsilon < 1/6 \): two stable and one unstable equilibria.
3. \(\epsilon = 0 \): two stable boundary equilibria.
Figure: Block system with (a) $\epsilon \geq 1/6$, (b) $0 < \epsilon < 1/6$, and (c) $\epsilon = 0$.
Let’s restrict our attention to the case $0 < \epsilon < 1/6$.
Let’s restrict our attention to the case $0 < \epsilon < 1/6$.

For the deterministic system, each compatibility class is divided into two regions by the unstable equilibrium.
Let’s restrict our attention to the case $0 < \epsilon < 1/6$.

For the deterministic system, each compatibility class is divided into two regions by the unstable equilibrium.

Trajectories originating on one side or the other collapse to their respective stable equilibrium concentrations.
Let’s restrict our attention to the case $0 < \epsilon < 1/6$.

For the deterministic system, each compatibility class is divided into two regions by the unstable equilibrium.

Trajectories originating on one side or the other collapse to their respective stable equilibrium concentrations.

What would happen if we modeled the system stochastically?
Let’s restrict our attention to the case $0 < \epsilon < 1/6$.

For the deterministic system, each compatibility class is divided into two regions by the unstable equilibrium.

Trajectories originating on one side or the other collapse to their respective stable equilibrium concentrations.

What would happen if we modeled the system stochastically?

Trajectories can *jump* from one side to the other!
Figure: Block system with $\epsilon = 0.12$.
Alternatively, we can consider how the *Chemical Master Equation* evolves in time.
Alternatively, we can consider how the *Chemical Master Equation* evolves in time.

Let’s consider just the *stationary distribution* for various values of ϵ (the stationary distribution is the limiting distribution of the probability density profile).
Alternatively, we can consider how the *Chemical Master Equation* evolves in time.

Let’s consider just the *stationary distribution* for various values of ϵ (the stationary distribution is the limiting distribution of the probability density profile).

For small systems, these distributions can be computed explicitly.
Alternatively, we can consider how the *Chemical Master Equation* evolves in time.

Let’s consider just the *stationary distribution* for various values of ϵ (the stationary distribution is the limiting distribution of the probability density profile).

For small systems, these distributions can be computed explicitly.

We expect areas of high density near where trajectories spend most of their time, and in fact...
Figure: Stationary distribution for the Block System with ten states and the value $\epsilon = 1$.
Figure: Stationary distribution for the Block System with ten states and the value $\epsilon = 0.5$.
Figure: Stationary distribution for the Block System with ten states and the value $\epsilon = 0.2$.
Figure: Stationary distribution for the Block System with ten states and the value $\epsilon = 0.15$.
Figure: Stationary distribution for the Block System with ten states and the value $\epsilon = 0.1$.
Thanks for coming out!
