Math 609:
Mathematical Methods for Systems Biology
Guest Lecture

Matthew Douglas Johnston
Van Vleck Visiting Assistant Professor
University of Wisconsin-Madison

Tuesday, May 6, 2014
1. Basic Enzyme Model
 - Set-up
 - Properties
 - Numerical Simulation
1 Basic Enzyme Model
 - Set-up
 - Properties
 - Numerical Simulation

2 Futile Cycle (Single Equilibrium)
 - Set-up
 - Properties
 - Numerical Simulation
1 Basic Enzyme Model
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation

2 Futile Cycle (Single Equilibrium)
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation

3 2-Site Phosphorylation Chain (Multiple Equilibria)
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation
1. Basic Enzyme Model
 - Set-up
 - Properties
 - Numerical Simulation

2. Futile Cycle (Single Equilibrium)
 - Set-up
 - Properties
 - Numerical Simulation

3. 2-Site Phosphorylation Chain (Multiple Equilibria)
 - Set-up
 - Properties
 - Numerical Simulation
Basic Michaelis-Menten Enzyme Model is

\[
S + E \overset{k_1^+}{\underset{k_1^-}{\rightleftharpoons}} C \overset{k_2}{\rightarrow} P + E
\]

where

1. \(S\) is a \textbf{substrate} (e.g. unphosphorylated protein)
2. \(E\) is an \textbf{enzyme}
3. \(C\) is an \textbf{intermediate compound} (really, \(C = SE\))
4. \(P\) is a \textbf{product} (e.g. phosphorylated protein)
5. \(k_1^+\), \(k_1^-\), and \(k_2\) are (positive) \textbf{rate constants}
Dynamics \textbf{(mass-action model)} given by:

\begin{align*}
\dot{s} &= -k_1^+ s \cdot e + k_1^- c \\
\dot{e} &= -k_1^+ s \cdot e + (k_1^- + k_2)c \\
\dot{c} &= k_1^+ s \cdot e - (k_1^- + k_2)c \\
\dot{p} &= k_2 c
\end{align*}

Dynamics (mass-action model) given by:

\[
\begin{align*}
\dot{s} &= -k_1^+ s \cdot e + k_1^- c \\
\dot{e} &= -k_1^+ s \cdot e + (k_1^- + k_2)c \\
\dot{c} &= k_1^+ s \cdot e - (k_1^- + k_2)c \\
\dot{p} &= k_2 c
\end{align*}
\]

where \(s = [S]\), \(e = [E]\), \(c = [C]\), and \(p = [P]\).

Distressing observation: system is 4-dimensional and has undetermined parameters. :-(
What properties can we use to analyse this model?
What properties can we use to analyse this model?

There are two conservation laws:

1. \[\dot{s} + \dot{c} + \dot{p} = 0 \implies s(t) + c(t) + p(t) = \text{constant}. \]
2. \[\dot{e} + \dot{c} = 0 \implies e(t) + c(t) = \text{constant}. \]
What properties can we use to analyse this model?

There are two conservation laws:

1. \(\dot{s} + \dot{c} + \dot{p} = 0 \implies s(t) + c(t) + p(t) = \text{constant.} \)
2. \(\dot{e} + \dot{c} = 0 \implies e(t) + c(t) = \text{constant.} \)

Relevant dynamics are on 2-dimensional subspace of the original 4-dimensional space. (Variable substitution.)
What properties can we use to analyse this model?

There are two conservation laws:

1. $\dot{s} + \dot{c} + \dot{p} = 0 \implies s(t) + c(t) + p(t) = \text{constant.}$
2. $\dot{e} + \dot{c} = 0 \implies e(t) + c(t) = \text{constant.}$

Relevant dynamics are on 2-dimensional subspace of the original 4-dimensional space. (Variable substitution.)

Quasi-steady state approximation may further reduce system to 1-dimensional space. (But with some loss of information.)
Alternative view on conservation relations...
Alternative view on conservation relations...

Each reaction gives a **reaction vector**—a net push of each reaction in the state space of the concentrations.
Alternative view on conservation relations...

Each reaction gives a **reaction vector**—a net push of each reaction in the state space of the concentrations.

For this example, we have

<table>
<thead>
<tr>
<th></th>
<th>$S + E \rightarrow C$</th>
<th>$C \rightarrow S + E$</th>
<th>$C \rightarrow P + E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$[-1]$</td>
<td>$[1]$</td>
<td>$[0]$</td>
</tr>
<tr>
<td>E</td>
<td>$[-1]$</td>
<td>$[1]$</td>
<td>$[1]$</td>
</tr>
<tr>
<td>C</td>
<td>$[1]$</td>
<td>$[-1]$</td>
<td>$[-1]$</td>
</tr>
<tr>
<td>P</td>
<td>$[0]$</td>
<td>$[0]$</td>
<td>$[1]$</td>
</tr>
</tbody>
</table>
Alternative view on conservation relations...

Each reaction gives a **reaction vector**—a net push of each reaction in the state space of the concentrations.

For this example, we have

<table>
<thead>
<tr>
<th></th>
<th>$S + E \rightarrow C$</th>
<th>$C \rightarrow S + E$</th>
<th>$C \rightarrow P + E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\begin{bmatrix} -1 \ -1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 \ 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 \ 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>E</td>
<td>$\begin{bmatrix} 1 \ -1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} -1 \ 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>C</td>
<td>$\begin{bmatrix} 0 \ -1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 0 \ 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 \ 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

These vectors span a 2-dimensional subspace of the concentration space called the **stoichiometric subspace** (notationally, S).
Divides state space into **stoichiometric compatibility classes** \(x_0 + S \) (different example pictured below):
Divides state space into **stoichiometric compatibility classes** $x_0 + S$ (different example pictured below):
Divides state space into **stoichiometric compatibility classes** $x_0 + S$ (different example pictured below):

Roughly, more “stuff” gives a higher compatibility class (since “stuff” is usually conserved)
Without simplification, what is the long-term behavior of the system?
Without simplification, what is the long-term behavior of the system?

Network structure (and intuition) dictates that S is converted into P (in some limiting way).
Without simplification, what is the **long-term behavior** of the system?

Network structure (and intuition) dictates that S is converted into P (in some limiting way).

Mathematically, we have that

\[
\dot{s} + \dot{c} = -k_2 c < 0 \\
\dot{p} = k_2 c > 0.
\]

That is, we lose S and C to P as time passes.
Figure: Numerical simulation of simple Enzyme model
1. Basic Enzyme Model
 - Set-up
 - Properties
 - Numerical Simulation

2. Futile Cycle (Single Equilibrium)
 - Set-up
 - Properties
 - Numerical Simulation

3. 2-Site Phosphorylation Chain (Multiple Equilibria)
 - Set-up
 - Properties
 - Numerical Simulation
Consider now the **Goldbeter-Koshland model** (also called the futile cycle):

\[
S + E \overset{k_1^+}{\underset{k_1^-}{\rightleftharpoons}} C_1 \overset{k_2}{\rightarrow} P + E
\]

\[
P + F \overset{k_3^+}{\underset{k_3^-}{\rightleftharpoons}} C_2 \overset{k_4}{\rightarrow} S + F
\]
Consider now the **Goldbeter-Koshland model** (also called the **futile cycle**):

\[
S + E \xrightleftharpoons[k^-_1]{k^+_1} C_1 \xrightarrow[k_2]{k^+_2} P + E \\
P + F \xrightleftharpoons[k^-_3]{k^+_3} C_2 \xrightarrow[k_4]{k^-_4} S + F
\]

Notice that **different enzymes** catalyze the forward and backward directions!
Dynamics (mass-action model) given by:

\[
\begin{align*}
\dot{s} &= -k_1^+ s \cdot e + k_1^- c_1 + k_4 c_2 \\
\dot{e} &= -k_1^+ s \cdot e + (k_1^- + k_2) c_1 \\
\dot{c}_1 &= k_1^+ s \cdot e - (k_1^- + k_2) c_1 \\
\dot{p} &= k_2 c_1 - k_3^+ p \cdot f + k_3^- c_2 \\
\dot{f} &= -k_3^+ p \cdot f + (k_3^- + k_4) c_2 \\
\dot{c}_2 &= k_3^+ p \cdot f - (k_3^- + k_4) c_2
\end{align*}
\]
Dynamics (mass-action model) given by:

\[
\begin{align*}
\dot{s} &= -k_1^+ s \cdot e + k_1^- c_1 + k_4 c_2 \\
\dot{e} &= -k_1^+ s \cdot e + (k_1^- + k_2) c_1 \\
\dot{c}_1 &= k_1^+ s \cdot e - (k_1^- + k_2) c_1 \\
\dot{p} &= k_2 c_1 - k_3^+ p \cdot f + k_3^- c_2 \\
\dot{f} &= -k_3^+ p \cdot f + (k_3^- + k_4) c_2 \\
\dot{c}_2 &= k_3^+ p \cdot f - (k_3^- + k_4) c_2
\end{align*}
\]

6-dimensional system with 6 undetermined parameters. Ack!
How can we **simplify** this model?
How can we **simplify** this model?

Three **conservation laws**:

1. \(\dot{s} + \dot{c}_1 + \dot{c}_2 + \dot{p} = 0 \)
 \[\Rightarrow s(t) + c_1(t) + c_2(t) + p(t) = \text{constant}. \]

2. \(\dot{e} + \dot{c}_1 = 0 \)
 \[\Rightarrow e(t) + c_1(t) = \text{constant}. \]

3. \(\dot{f} + \dot{c}_2 = 0 \)
 \[\Rightarrow f(t) + c_2(t) = \text{constant}. \]
How can we **simplify** this model?

Three **conservation laws**:

1. $\dot{s} + \dot{c}_1 + \dot{c}_2 + \dot{p} = 0$
 \[\implies s(t) + c_1(t) + c_2(t) + p(t) = \text{constant}.\]

2. $\dot{e} + \dot{c}_1 = 0$
 \[\implies e(t) + c_1(t) = \text{constant}.\]

3. $\dot{f} + \dot{c}_2 = 0$
 \[\implies f(t) + c_2(t) = \text{constant}.\]

Reduces system to **3-dimensional system**.
How can we *simplify* this model?

Three *conservation laws*:

1. \(\dot{s} + \dot{c}_1 + \dot{c}_2 + \dot{p} = 0 \)
 \[\Rightarrow s(t) + c_1(t) + c_2(t) + p(t) = \text{constant}. \]
2. \(\dot{e} + \dot{c}_1 = 0 \)
 \[\Rightarrow e(t) + c_1(t) = \text{constant}. \]
3. \(\dot{f} + \dot{c}_2 = 0 \)
 \[\Rightarrow f(t) + c_2(t) = \text{constant}. \]

Reduces system to 3-*dimensional system*.

Quasi-steady state approximation reduces further to 1-dimension. (Loss of information.)
Without simplification, what kind of **dynamical properties** does this model have?
Without simplification, what kind of **dynamical properties** does this model have?

Consider **network structure**:
Without simplification, what kind of dynamical properties does this model have?

Consider network structure:

First component: \(S \rightarrow P \)
Second component: \(P \rightarrow S \)

\(\implies \) **Dynamic balance** should be struck!
Without simplification, what kind of dynamical properties does this model have?

Consider network structure:

First component: \(S \rightarrow P \)
Second component: \(P \rightarrow S \)

\(\implies\) Dynamic balance should be struck!

Questions:

1. Is this point of balance **unique**?
2. Is this point **attracting**?
Without simplification, what kind of dynamical properties does this model have?

Consider network structure:
- First component: $S \rightarrow P$
- Second component: $P \rightarrow S$

\implies **Dynamic balance** should be struck!

Questions:

1. Is this point of balance unique? (Yes! [1], 2008)
2. Is this point attracting? (Yes! [1], 2008)
Figure: Two simulations of futile cycle with different initial conditions (same parameter values). Notice different transient behavior but same eventual long-term behavior.
1 Basic Enzyme Model
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation

2 Futile Cycle (Single Equilibrium)
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation

3 2-Site Phosphorylation Chain (Multiple Equilibria)
 ■ Set-up
 ■ Properties
 ■ Numerical Simulation
Generalize the model again! **(2-site phosphorylation chain):**

\[
S_0 + E \xrightleftharpoons[k_1^-]{k_1^+} C_1 \xrightarrow{k_2} S_1 + E \xrightleftharpoons[k_3^-]{k_3^+} C_2 \xrightarrow{k_4} S_2 + E
\]

\[
S_2 + F \xrightleftharpoons[k_5^-]{k_5^+} C_3 \xrightarrow{k_6} S_1 + F \xrightleftharpoons[k_7^-]{k_7^+} C_4 \xrightarrow{k_8} S_0 + F
\]

Imagine S_0, S_1, S_2 are phosphorylated substrates, E is a kinase (adds phosphate group), F is a phosphatase (removes phosphate group). 9 species, 12 parameters, 3 conservation laws \Rightarrow large system even after simplification!
Generalize the model again! (2-site phosphorylation chain):

\[
\begin{align*}
S_0 + E & \xrightleftharpoons[k_1^-]{k_1^+} C_1 \quad \xrightarrow{k_3} S_1 + E \\
S_2 + F & \xrightleftharpoons[k_5^-]{k_5^+} C_3 \quad \xrightarrow{k_6} S_1 + F \\
& \xrightarrow[k_7^-]{k_7^+} C_4 \quad \xrightarrow[k_8^-]{k_8^+} S_0 + F
\end{align*}
\]

Imagine \(S_0, S_1, S_2\) are **phosphorylated substrates**, \(E\) is a **kinase** (adds phosphate group), \(F\) is a **phosphatase** (removes phosphate group).
Generalize the model again! (2-site phosphorylation chain):

\[
\begin{align*}
S_0 + E \quad & \xrightleftharpoons[k_1^-]{k_1^+} C_1 \quad & \xrightarrow{k_2} S_1 + E \\
S_2 + F \quad & \xrightleftharpoons[k_5^-]{k_5^+} C_3 \quad & \xrightarrow{k_6} S_1 + F \\
& \quad & \xrightarrow{k_7} C_4 \quad & \xrightarrow{k_8} S_0 + F
\end{align*}
\]

Imagine \(S_0, S_1, S_2 \) are phosphorylated substrates, \(E \) is a kinase (adds phosphate group), \(F \) is a phosphotase (removes phosphate group).

9 species, 12 parameters, 3 conservation laws \(\implies \) large system even after simplification!
We need to build intuitive approach to guide mathematical analysis.
We need to build intuitive approach to guide mathematical analysis.

Consider **network structure**:
We need to build intuitive approach to guide mathematical analysis.

Consider **network structure**:

First component: $S_0 \rightarrow S_1 \rightarrow S_2$

Second component: $S_2 \rightarrow S_1 \rightarrow S_0$

\implies **Dynamic balance** struck?
We need to build intuitive approach to guide mathematical analysis.

Consider **network structure**:

First component: \(S_0 \rightarrow S_1 \rightarrow S_2 \)
Second component: \(S_2 \rightarrow S_1 \rightarrow S_0 \)

\(\implies \) Dynamic balance struck?

Questions:

1. Is the point of balancing **unique**?
2. Is the point of balancing **attracting**?
We need to build intuitive approach to guide mathematical analysis.

Consider network structure:

First component: \(S_0 \rightarrow S_1 \rightarrow S_2 \)

Second component: \(S_2 \rightarrow S_1 \rightarrow S_0 \)

\[\implies \text{Dynamic balance struck?} \]

Questions:

1. Is the point of balancing unique?
2. Is the point of balancing attracting?

More complicated than it appears...
For most parameter values, system \textbf{settles} to a dynamic equilibrium regardless of initial conditions.
For most parameter values, system **settles** to a dynamic equilibrium regardless of initial conditions.
This is not the end of the story!
This is not the end of the story!

In general, the long-term behavior depends on:

1. The **parameter values** k_i, $i = 1, \ldots, r$;
2. The **initial condition** x_0; and
3. The **stoichiometric compatibility class** ($\text{spaces } x_0 + S$).
This is not the end of the story!

In general, the long-term behavior depends on:

1. The **parameter values** k_i, $i = 1, \ldots, r$;
2. The **initial condition** x_0; and
3. The **stoichiometric compatibility class** (spaces $x_0 + S$).

There are a lot of cases!
This is not the end of the story!

In general, the long-term behavior depends on:

1. The parameter values \(k_i, i = 1, \ldots, r \);
2. The initial condition \(x_0 \); and
3. The stoichiometric compatibility class (spaces \(x_0 + S \)).

There are a lot of cases!

In fact, there are parameter values and stoichiometric compatibility classes such that there are three equilibria, two of which are stable!
Figure: Two simulations of 2-site phosphorylation chain with two different initial conditions (same parameter values). Notice that the long-term behavior is significantly different! (Note: Only S_0, S_1, and S_2 shown.)

Matthew Douglas Johnston

Guest Lecture

General *n-site phosphorylation chain* known to exhibit multistationarity for all $n \geq 2$ (maximum bounded between n and $2n - 1$ steady states) (Wang *et al.* [4] (2008).

General *n*-site phosphorylation chain known to exhibit multistationarity for all $n \geq 2$ (maximum bounded between n and $2n - 1$ steady states) (Wang et al. [4] (2008).

Multistationarity (i.e. existence of two asymptotically stable fixed points) still an active area of research.
These results are a part of a largest field of study know as Chemical Reaction Network Theory (CRNT).
These results are a part of a largest field of study know as Chemical Reaction Network Theory (CRNT).

Focuses on the connection between network structure and dynamics.
These results are a part of the largest field of study known as **Chemical Reaction Network Theory (CRNT)**.

Focuses on the connection between **network structure** and **dynamics**.

Combines dynamical systems theory, graph theory, linear algebra, algebraic geometry, biochemistry, etc. etc. etc.
These results are a part of a largest field of study know as **Chemical Reaction Network Theory (CRNT)**.

Focuses on the connection between **network structure** and **dynamics**.

Combines dynamical systems theory, graph theory, linear algebra, algebraic geometry, biochemistry, etc. etc. etc.

General, **no model reduction / simplification.** (Scary!)
Selected Bibliography

