Contour Plots for Study Guide

2(a)

\[f(x, y) = \frac{y}{x^2 - 1} \]

Contours are

\[\frac{y}{x^2 - 1} = C \quad \implies \quad y = C(x^2 - 1) \]

Parabolas with roots are \(x = -1 \) and \(x = 1 \). \(C \) controls the stretching. Note that every parabola goes through \((-1, 0)\) and \((1, 0)\) and hence the function does not have a limit there.
2(b)

\[f(x, y) = x^2 - y^2 + 2y \]

Contours are

\[x^2 - y^2 + 2y = C \quad \implies \quad \frac{x^2}{C - 1} - \frac{(y - 1)^2}{C - 1} = 1 \]

Hyperbolas centered at \(x = 0, y = 1 \); open in \(x \) for \(C > 1 \), open in \(y \) for \(C < 1 \)
3(a)

\[f(x, y) = \frac{y}{1 - e^x} \]

Contours are
\[\frac{y}{1 - e^x} = C \quad \implies \quad y = C(1 - e^x) \]

Shifted exponentials which all go through \(x = 0, \ y = 0 \). \(C \) controls the steepness and direction of opening (i.e. up or down).
3(b)

\[f(x, y) = \frac{2x^2y}{x^4 + y^2} \]

Contours are

\[
\frac{2x^2y}{x^4 + y^2} = C \implies 2x^2y = Cx^4 + Cy^2 \implies Cy^2 - 2x^2y + Cx^4
\]

\[
\implies y = \frac{2x^2 \pm \sqrt{4x^4 - 4C^2x^4}}{2C} = \left(\frac{1 \pm \sqrt{1 - C^2}}{C} \right)x^2
\]

Parabolas where \(C \) controls the steepness. Note that \(C = 0 \) corresponds to \(x = 0 \) or \(y = 0 \), \(C = 1 \) gives \(y = x^2 \), and \(C = -1 \) gives \(y = -x^2 \).
3(c)

\[f(x, y) = \frac{x^2 + y^2}{y} \]

Contours are

\[\frac{x^2 + y^2}{y} = C \quad \Rightarrow \quad x^2 + y^2 = Cy \quad \Rightarrow \quad x^2 + (y - \frac{C}{2})^2 = \frac{C^2}{4} \]

Circles with center \((0, \frac{C}{2})\) and radius \(\frac{C}{2}\). Note that all such circles go through \((0, 0)\) and we may allow \(C < 0\).