Name (printed): __________________________

SJSU Student ID Number: __________________________

Instructions

1. Fill out this cover page **completely** and affix it to the front of your submitted assignment.

 ![Correctness Table]

 Correctness /15

2. **Staple** your assignment together and answer the questions in the order they appear on the assignment sheet.

 ![Completeness Table]

 Completeness /5

3. You are encouraged to collaborate on assignment problems but you must write up your assignment independently. **Copying is strictly forbidden!**

 ![Total and Bonus Tables]

 Total: /20
 Bonus: /3

Grader Initials:
Laplace Transforms

Q1: Use the definition of the Laplace Transform to evaluate the following:

(a) \(\mathcal{L}\{xe^{ax}\}, \ a \in \mathbb{R} \) \hspace{1cm} (b) \(\mathcal{L}\{\cos(bx)\}, \ b \in \mathbb{R} \)

Q2: Determine the Laplace transform of the following:

(a) \(f(x) = e^{-x} - x^4 + \cos(2x) \)
(b) \(f(x) = e^{3x} \ (x + \sin(x)) \)

(Note: You do not have to use the definition!)

Q3: Determine the inverse Laplace transform of the following:

(a) \(F(s) = \frac{s^2 + 1}{s^3 - 2s^2 + s} \)
(b) \(F(s) = \frac{2s + 1}{s^2 - 2s + 2} \)

Q4: Use Laplace transforms to solve the following initial value problems:

(a) \(y'' - 4y' + 4y = 0; \ y(0) = 1, \ y'(0) = 1 \)
(b) \(y'' + 2y' + y = 4e^{-x}; \ y(0) = 2, \ y'(0) = -1 \)

BONUS: One notable exception to our list of Laplace transform identities has been

\[\mathcal{L}\{x^n f(x)\} \]

That is to say, we have no general identity for the Laplace transform of a standard function multiplied by a power of \(x \).

Suppose that \(\mathcal{L}\{f(x)\} = F(s) \). Use the definition of the Laplace transform to show that \(\mathcal{L}\{xf(x)\} = -F'(s) \). Use this to evaluate

\[\mathcal{L}^{-1}\left\{ \frac{4s}{(s^2 + 4)^2} \right\} \]