MBI Workshop:
Applications of Generalized Networks to Biochemical Reaction Systems

Matthew Douglas Johnston
Assistant Professor
San José State University
One Washington Square
San José, CA 95192

Mathematical Biosciences Institute (Columbus, OH)
Tuesday, January 26, 2016
1 Background
 - Overview
 - Mass Action Systems

2 Classical Results
 - Deficiency Zero Theorem
 - Enzymatic Futile Cycle
 - Generalized Reaction Networks

3 Outlook
 - EnvZ/OmpR Signaling Pathway
 - Wnt Signaling Pathway
 - Summary and Future Work
1 Background
 ■ Overview
 ■ Mass Action Systems

2 Classical Results
 ■ Deficiency Zero Theorem
 ■ Enzymatic Futile Cycle
 ■ Generalized Reaction Networks

3 Outlook
 ■ EnvZ/OmpR Signaling Pathway
 ■ Wnt Signaling Pathway
 ■ Summary and Future Work
Figure: Picture courtesy of Wikipedia.
Objective:

Use **network structure** to determine **dynamical properties** of the biochemical reaction systems.

Protein activation

\[
\begin{align*}
A + B & \rightarrow 2B \\
B & \rightarrow A
\end{align*}
\]

Enzymatic futile cycle

\[
\begin{align*}
S + E & \Leftrightarrow SE \rightarrow P + E \\
P + F & \Leftrightarrow PF \rightarrow S + F
\end{align*}
\]

EnvZ/OmpR Signaling Pathway

\[
\begin{align*}
XD & \Leftrightarrow X \Leftrightarrow XT \rightarrow X_p \\
X_p + Y & \Leftrightarrow X_pY \rightarrow X + Y_p \\
XT + Y_p & \Leftrightarrow XTY_p \rightarrow Y
\end{align*}
\]
Mass-Action System

Track concentrations with system of autonomous polynomial ordinary differential equations.

Protein activation model: \((A \text{ inactive, } B \text{ active})\)

\[
\begin{align*}
A + B & \xrightarrow{\alpha} 2B \quad \text{(activation)} \\
B & \xrightarrow{\beta} A \quad \text{(de-activation)}
\end{align*}
\]

Mass-action system:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B.
\end{align*}
\]
Mass-Action System

Track concentrations with system of autonomous polynomial ordinary differential equations.

Protein activation model: (A inactive, B active)

\[
\begin{align*}
A + B & \xrightarrow{\alpha} 2B \\
B & \xrightarrow{\beta} A
\end{align*}
\]

(activation) (de-activation)

Mass-action system:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B.
\end{align*}
\]
Mass-Action System

Track concentrations with system of autonomous polynomial ordinary differential equations.

Protein activation model: (A inactive, B active)

\[
\begin{align*}
A + B & \xrightarrow{\alpha} 2B \quad \text{(activation)} \\
B & \xrightarrow{\beta} A \quad \text{(de-activation)}
\end{align*}
\]

Mass-action system:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B.
\end{align*}
\]
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \xrightleftharpoons[k_2]{k_1} SE \xrightarrow{k_3} P + E \\
P + F & \xrightleftharpoons[k_5]{k_4} PF \xrightarrow{k_6} S + F
\end{align*}
\]

S - substrate
P - product
E - kinase
F - phosphotase

Governed by **mass action system**:

\[
\begin{align*}
\dot{x}_S &= -k_1 x_S x_E + k_2 x_{SE} + k_6 x_{PF} \\
\dot{x}_E &= -k_1 x_S x_E + k_2 x_{SE} + k_3 x_{SE} \\
\dot{x}_{SE} &= k_1 x_S x_E - k_2 x_{SE} - k_3 x_{SE} \\
\dot{x}_P &= k_3 x_{SE} - k_4 x_P x_F + k_5 x_{PF} \\
\dot{x}_F &= -k_4 x_P x_F + k_5 x_{PF} + k_6 x_{PF} \\
\dot{x}_{PF} &= k_4 x_P x_F - k_5 x_{PF} - k_6 x_{PF}.
\end{align*}
\]
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \overset{k_1}{\underset{k_2}{\rightleftharpoons}} SE \overset{k_3}{\rightarrow} P + E \\
P + F & \overset{k_4}{\underset{k_5}{\rightleftharpoons}} PF \overset{k_6}{\rightarrow} S + F
\end{align*}
\]

S - substrate
P - product
E - kinase
F - phosphotase

Governed by mass action system:

\[
\begin{align*}
\dot{x}_S &= -k_1 x_S x_E + k_2 x_{SE} + k_6 x_{PF} \\
\dot{x}_E &= -k_1 x_S x_E + k_2 x_{SE} + k_3 x_{SE} \\
\dot{x}_{SE} &= k_1 x_S x_E - k_2 x_{SE} - k_3 x_{SE} \\
\dot{x}_P &= k_3 x_{SE} - k_4 x_P x_F + k_5 x_{PF} \\
\dot{x}_F &= -k_4 x_P x_F + k_5 x_{PF} + k_6 x_{PF} \\
\dot{x}_{PF} &= k_4 x_P x_F - k_5 x_{PF} - k_6 x_{PF}.
\end{align*}
\]
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \xrightleftharpoons[k_2]{k_1} SE & \xrightarrow[k_3]{k_3} P + E \\
P + F & \xrightleftharpoons[k_5]{k_4} PF & \xrightarrow[k_6]{k_6} S + F
\end{align*}
\]

S - substrate
P - product
E - kinase
F - phosphotase

Governed by mass action system:

\[
\begin{align*}
\dot{x}_S &= -k_1 x_S x_E + k_2 x_{SE} + k_6 x_{PF} \\
\dot{x}_E &= -k_1 x_S x_E + k_2 x_{SE} + k_3 x_{SE} \\
\dot{x}_{SE} &= k_1 x_S x_E - k_2 x_{SE} - k_3 x_{SE} \\
\dot{x}_P &= k_3 x_{SE} - k_4 x_P x_F + k_5 x_{PF} \\
\dot{x}_F &= -k_4 x_P x_F + k_5 x_{PF} + k_6 x_{PF} \\
\dot{x}_{PF} &= k_4 x_P x_F - k_5 x_{PF} - k_6 x_{PF}.
\end{align*}
\]
General mass action system:

\[
\frac{dx(t)}{dt} = \sum_{i=1}^{r} k_i \left(y'_i - y_i \right) \prod_{j=1}^{m} x_j^{y_{ij}}
\]

where, for each reaction,

- \(k_i > 0 \) is the **rate constant**
- \(y'_i - y_i \in \mathbb{R}^m \) is the **reaction vector**
- \(\prod_{j=1}^{m} x_j^{y_{ij}} \) is the **interaction term**

Polynomial differential equations arise frequently in mathematical biology! (e.g. infectious disease, ecosystems)
General mass action system:

\[
\frac{dx(t)}{dt} = \sum_{i=1}^{r} k_i \left(y_i' - y_i \right) \prod_{j=1}^{m} x_j^{y_{ij}}
\]

where, for each reaction,

- \(k_i > 0 \) is the rate constant
- \(y_i' - y_i \in \mathbb{R}^m \) is the reaction vector
- \(\prod_{j=1}^{m} x_j^{y_{ij}} \) is the interaction term

Polynomial differential equations arise frequently in mathematical biology! (e.g. infectious disease, ecosystems)
General mass action system:

\[\frac{dx(t)}{dt} = \sum_{i=1}^{r} k_i \left(y'_i - y_i \right) \prod_{j=1}^{m} x_j^{y_{ij}} \]

where, for each reaction,

- \(k_i > 0 \) is the rate constant
- \(y'_i - y_i \in \mathbb{R}^m \) is the reaction vector
- \(\prod_{j=1}^{m} x_j^{y_{ij}} \) is the interaction term

Polynomial differential equations arise frequently in mathematical biology! (e.g. infectious disease, ecosystems)
General mass action system:

\[
\frac{dx(t)}{dt} = \sum_{i=1}^{r} k_i (y_i' - y_i) \prod_{j=1}^{m} x_j^{y_{ij}}
\]

where, for each reaction,

- \(k_i > 0 \) is the rate constant
- \(y_i' - y_i \in \mathbb{R}^m \) is the reaction vector
- \(\prod_{j=1}^{m} x_j^{y_{ij}} \) is the interaction term

Polynomial differential equations arise frequently in mathematical biology! (e.g. infectious disease, ecosystems)
General properties:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B
\end{align*}
\]
General properties:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B = 0 \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B = 0
\end{align*}
\]

Steady states:

\[
\alpha x_A x_B - \beta x_B = 0 \implies x_B = 0 \text{ or } x_A = \frac{\beta}{\alpha}
\]
General properties:

\[
\dot{x}_A = -\alpha x_A x_B + \beta x_B \\
\dot{x}_B = \alpha x_A x_B - \beta x_B
\]

Steady states:

\[
\alpha x_A x_B - \beta x_B = 0 \implies x_B = 0 \text{ or } x_A = \frac{\beta}{\alpha}
\]

Invariant Subspace:

\[
\begin{bmatrix}
\dot{x}_A \\
\dot{x}_B
\end{bmatrix} = \alpha x_A x_B \begin{bmatrix}
-1 \\
1
\end{bmatrix} + \beta x_B \begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]
General properties:

\[
\begin{align*}
\dot{x}_A &= -\alpha x_A x_B + \beta x_B \\
\dot{x}_B &= \alpha x_A x_B - \beta x_B
\end{align*}
\]

Steady states:

\[
\alpha x_A x_B - \beta x_B = 0 \implies x_B = 0 \text{ or } x_A = \frac{\beta}{\alpha}
\]

Invariant Subspace:

\[
\begin{bmatrix}
\dot{x}_A \\
\dot{x}_B
\end{bmatrix} = \alpha x_A x_B \begin{bmatrix}
-1 \\
1
\end{bmatrix} + \beta x_B \begin{bmatrix}
1 \\
-1
\end{bmatrix} \in \text{span} \left\{ \begin{bmatrix}
-1 \\
1
\end{bmatrix} \right\}
\]
Figure: State space is partitioned (invariant spaces)
Figure: State space is **partitioned** (invariant spaces)
Figure: State space is partitioned (invariant spaces)
Figure: State space is **partitioned** (invariant spaces)
1 Background
 ■ Overview
 ■ Mass Action Systems

2 Classical Results
 ■ Deficiency Zero Theorem
 ■ Enzymatic Futile Cycle
 ■ Generalized Reaction Networks

3 Outlook
 ■ EnvZ/OmpR Signaling Pathway
 ■ Wnt Signaling Pathway
 ■ Summary and Future Work
Question: Why study the network properties associated with a mass action system?

Results known relating network properties to dynamical properties:

- Existence/number of positive steady states
- Capacity of boundedness and persistence (i.e. non-extinction)
- Long-term dynamical behavior
Deficiency Zero Theorem:

Assumptions: Network structure

Conclusions: System dynamics

Theorem (Horn, Jackson, Feinberg, 1972 [1, 2, 3])

Consider a mass action system for which

- the underlying network is weakly reversible; and
- the deficiency is zero.

Then the system has a unique locally stable steady state for every choice of rate constants and every positive stoichiometric compatibility class.
Deficiency Zero Theorem:

Assumptions: Network structure
Conclusions: System dynamics

Theorem (Horn, Jackson, Feinberg, 1972 [1, 2, 3])

Consider a mass action system for which

- the underlying network is weakly reversible; and
- the deficiency is zero.

Then the system has a unique locally stable steady state for every choice of rate constants and every positive stoichiometric compatibility class.
Deficiency Zero Theorem:

Assumptions: Network structure
Conclusions: System dynamics

Theorem (Horn, Jackson, Feinberg, 1972 [1, 2, 3])

Consider a mass action system for which

- the underlying network is weakly reversible; and
- the deficiency is zero.

Then the system has a unique locally stable steady state for every choice of rate constants and every positive stoichiometric compatibility class.
Example:

\[
\begin{align*}
X_1 & \xrightarrow{k_1} 2X_2 \\
X_2 + X_3 & \xleftarrow{k_3} \xrightarrow{k_2} X_3 \\
X_3 & \xleftrightarrow{k_4 \quad k_5} X_4.
\end{align*}
\]

- Network is \textbf{weakly reversible} (strongly connected)
- Consider \textbf{deficiency} (network parameter):

\[
\delta = n - \ell - s
\]
Example:

Network is **weakly reversible** (strongly connected)

Consider **deficiency** (network parameter):

\[\delta = n - \ell - s \]
Example:

\[
\begin{align*}
X_1 & \xrightarrow{k_1} 2X_2 \\
X_2 & \xleftrightarrow{k_2} X_3 \\
X_3 & \xleftrightarrow{k_4} X_4
\end{align*}
\]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):

\[\delta = n - \ell - s\]
Example:

\[
\begin{align*}
X_1 & \xrightarrow{k_1} 2X_2 \\
k_3 & \leftrightarrow k_2 \\
X_2 + X_3 & \xleftrightarrow{k_4 \leftrightarrow k_5} X_4.
\end{align*}
\]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):

\[
\delta = n - \ell - s = 5
\]
Example:

\[
X_1 \xrightarrow{k_1} 2X_2 \\
X_2 + X_3 \xleftrightarrow{k_2, k_3} X_3 \xleftrightarrow{k_4, k_5} X_4.
\]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):

\[
\delta = n - \ell - s = 5 - 2
\]
Example:

\[
\begin{align*}
X_1 & \xrightarrow{k_1} 2X_2 \\
X_2 & \xleftarrow{k_3} X_3 \\
X_2 + X_3 & \xleftrightarrow{k_2} X_3 \\
X_3 & \xleftrightarrow{k_4, k_5} X_4.
\end{align*}
\]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):

\[
\delta = n - \ell - s = 5 - 2
\]
Example:

\[
X_1 \xrightarrow{k_1} 2X_2 \\
X_2 \xleftrightarrow{k_2} X_3 \\
X_3 \xleftrightarrow{k_4} X_4.
\]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):

\[
\delta = n - \ell - s = 5 - 2 - 3
\]
Example:

\[X_1 \xrightarrow{k_1} 2X_2 \]
\[k_3 \leftarrow \downarrow \uparrow k_2 \]
\[X_2 + X_3 \]

\[X_3 \xleftrightarrow{k_4 \quad k_5} X_4. \]

- Network is \textbf{weakly reversible} (strongly connected)
- Consider \textbf{deficiency} (network parameter):

\[\delta = n - \ell - s = 5 - 2 - 3 = 0 \]
Example:

\[X_1 \xrightarrow{k_1} 2X_2 \]
\[k_3 \quad \text{↔} \quad k_2 \]
\[X_2 + X_3 \]
\[X_3 \xrightleftharpoons[k_4]{k_5} X_4. \]

- Network is **weakly reversible** (strongly connected)
- Consider **deficiency** (network parameter):
 \[\delta = n - \ell - s = 5 - 2 - 3 = 0 \]
- **Deficiency Zero Theorem** applies!
Mass action system:

\[\begin{align*}
\dot{x}_1 &= -k_1 x_1 + k_3 x_2 x_3 \\
\dot{x}_2 &= 2k_1 x_1 - k_2 x_2^2 - k_3 x_2 x_3 \\
\dot{x}_3 &= k_2 x_2^2 - k_3 x_2 x_3 - k_4 x_3 + k_5 x_4 \\
\dot{x}_4 &= k_4 x_3 - k_5 x_4
\end{align*}\]

- **Steady state manifold** parametrized by

\[E = \{x \in \mathbb{R}_0^4 \mid \ln(x) - \ln(x^*) \in S^\perp\}\]

- **Unique steady state** \(x^*\) within each compatibility class.

- **Asymptotical stability** of \(x^*\) within each compatibility class.
Several powerful network-based results known, e.g.
- Deficiency Zero Theorem (HJ&F, 1972 [1, 2, 3])
- Deficiency One Theorem (Feinberg, 1987 [4])
- Global Attractor Conjecture (Craciun et al., 2009, [5])

Recurring property of interest is weak reversibility.

Minimal dependence on reaction parameters and initial conditions.
Chemical Reaction Network Theory (1972-):

- Several powerful network-based results known, e.g.
 - Deficiency Zero Theorem (HJ&F, 1972 [1, 2, 3])
 - Deficiency One Theorem (Feinberg, 1987 [4])
 - Global Attractor Conjecture (Craciun et al., 2009, [5])

- Recurring property of interest is weak reversibility. (*)

- Minimal dependence on reaction parameters and initial conditions. (*)

- Realistic for biochemical models?
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \overset{k_1}{\underset{k_2}{\leftrightarrow}} SE \overset{k_3}{\rightarrow} P + E \\
P + F & \overset{k_4}{\underset{k_5}{\leftrightarrow}} PF \overset{k_6}{\rightarrow} S + F
\end{align*}
\]

- Network is **not weakly reversible**.
- We have \(\delta = n - \ell - s = 1 \neq 0 \).
- Deficiency Zero Theorem does not apply (analogous dynamical result proved by Angeli and Sontag in 2008 [6]).
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \rightleftharpoons SE \xrightarrow{k_3} P + E \\
P + F & \rightleftharpoons PF \xrightarrow{k_6} S + F
\end{align*}
\]

- Network is **not weakly reversible**.
- We have \(\delta = n - \ell - s = 1 \neq 0 \).
- Deficiency Zero Theorem does not apply (analogous dynamical result proved by Angeli and Sontag in 2008 [6]).
Enzymatic cycle (e.g. MAPK Cascade):

\[
\begin{align*}
S + E & \xrightleftharpoons[k_1^{-1}]{k_1} SE \xrightarrow{k_3} P + E \\
P + F & \xrightleftharpoons[k_4^{-1}]{k_4} PF \xrightarrow{k_6} S + F
\end{align*}
\]

- Network is not weakly reversible.
- We have \(\delta = n - \ell - s = 1 \neq 0 \).
- Deficiency Zero Theorem does not apply (analogous dynamical result proved by Angeli and Sontag in 2008 [6]).
Alternative approach:

Perhaps we are considering the **wrong network representation**!

- **Generalized chemical reaction networks** recently introduced (Müller & Regensburger, 2012 [7])

- **Two sets of complexes** for each vertex in the reaction graph:
 1. stoichiometric complexes
 2. kinetic complexes
Example:

\[X_1 \overset{k_1}{\rightleftharpoons} X_2 + X_3 \]

1. **Stoichiometric complexes:** \(\{X_1, X_2 + X_3\} \)
Example:

\[X_1 + X_2 \cdots \overset{k_1}{\underset{k_2}{\rightleftharpoons}} X_1 \ \Leftrightarrow \ X_2 + X_3 \cdots 2X_3 \]

1. **Stoichiometric complexes:** \{\(X_1, X_2 + X_3\}\)
2. **Kinetic complexes:** \{\(X_1 + X_2, 2X_3\}\)
Example:

\[X_1 + X_2 \quad \cdots \quad X_1 \rightleftharpoons^{k_1}_{k_2} X_2 + X_3 \quad \cdots \quad 2X_3 \]

1. Stoichiometric complexes: \(\{X_1, X_2 + X_3\} \)
2. Kinetic complexes: \(\{X_1 + X_2, 2X_3\} \)

Generalized mass action system (GMAS):

\[
\begin{align*}
\dot{x}_1 &= -k_1 x_1 x_2 + k_2 x_3^2 \\
\dot{x}_2 &= k_1 x_1 x_2 - k_2 x_3^2 \\
\dot{x}_3 &= k_1 x_1 x_2 - k_2 x_3^2
\end{align*}
\]
Example:

\[
X_1 + X_2 \quad \cdots \quad X_1 \xrightleftharpoons[1/k_2]{k_1} X_2 + X_3 \quad \cdots \quad 2X_3
\]

1. **Stoichiometric complexes:** \(\{X_1, X_2 + X_3\} \)
2. **Kinetic complexes:** \(\{X_1 + X_2, 2X_3\} \)

Generalized mass action system (GMAS):

\[
\begin{align*}
\dot{x}_1 & = -k_1 x_1 x_2 + k_2 x_3^2 \\
\dot{x}_2 & = k_1 x_1 x_2 - k_2 x_3^2 \\
\dot{x}_3 & = k_1 x_1 x_2 - k_2 x_3^2
\end{align*}
\]
Example:

\[X_1 + X_2 \cdots X_1 \overset{k_1}{\underset{k_2}{\rightleftharpoons}} X_2 + X_3 \cdots 2X_3 \]

1. **Stoichiometric complexes:** \(\{X_1, X_2 + X_3\} \)

2. **Kinetic complexes:** \(\{X_1 + X_2, 2X_3\} \)

Generalized mass action system (GMAS):

\[
\begin{align*}
\dot{x}_1 &= -k_1 x_1 x_2 + k_2 x_3^2 \\
\dot{x}_2 &= k_1 x_1 x_2 - k_2 x_3^2 \\
\dot{x}_3 &= k_1 x_1 x_2 - k_2 x_3^2
\end{align*}
\]
Question:
Can we find a **generalized representations** of biochemical reaction systems with better network properties?

Reconsider the **enzymatic futile cycle**:

\[
(N1) \begin{cases}
S + E \iff SE \rightarrow P + E \\
P + F \iff PF \rightarrow S + F
\end{cases}
\]
Question:

Can we find a **generalized representations** of biochemical reaction systems with better network properties?

Reconsider the **enzymatic futile cycle**:

\[
(N1) \begin{cases}
S + E \rightleftharpoons SE \rightarrow P + E \\
\quad (+F) \\
\end{cases} \quad \begin{cases}
P + F \rightleftharpoons PF \rightarrow S + F \\
\quad (+E) \\
\end{cases}
\]
Can we find a **generalized representations** of biochemical reaction systems with better network properties?

Reconsider the **enzymatic futile cycle**:

$$
\begin{align*}
(N1) \quad & S + E \iff SE \rightarrow P + E \quad (+F) \\
& P + F \iff PF \rightarrow S + F \quad (+E)
\end{align*}
$$

$$
\begin{align*}
(N2) \quad & S + E + F \iff SE + F \\
& PF + E \iff P + E + F
\end{align*}
$$
Question:

Can we find a **generalized representations** of biochemical reaction systems with better network properties?

Reconsider the **enzymatic futile cycle**:

\[
(N1) \begin{cases}
S + E \Leftrightarrow SE \rightarrow P + E & (+F) \\
P + F \Leftrightarrow PF \rightarrow S + F & (+E)
\end{cases}
\]

\[
(N2) \begin{cases}
S + E + F \Leftrightarrow SE + F \\
PF + E \Leftrightarrow P + E + F
\end{cases}
\]
Question:
Can we find a generalized representations of biochemical reaction systems with better network properties?

Reconsider the enzymatic futile cycle:

\[
(N1) \begin{cases}
S + E \rightleftharpoons SE \rightarrow P + E \\
P + F \rightleftharpoons PF \rightarrow S + F
\end{cases} (+ F) \\
(+ E)
\]

\[
(N2) \begin{cases}
S + E + F \rightleftharpoons SE + F \\
PF + E \rightleftharpoons P + E + F
\end{cases}
\]
Network is **weakly reversible** and **deficiency zero** but we still need to consider the **kinetic complexes**:

\[
S + E + F \rightleftharpoons SE + F
\]

\[
\uparrow \quad \downarrow
\]

\[
PF + E \rightleftharpoons P + E + F
\]

Corresponding generalized mass action system has **exactly** the same governing dynamical equations!
Network is **weakly reversible** and **deficiency zero** but we still need to consider the **kinetic complexes**:

\[
\begin{align*}
S + E & \quad \cdots \quad S + E + F \Leftrightarrow SE + F \quad \cdots \quad SE \\
\uparrow & \quad \quad \downarrow \\
PF & \quad \cdots \quad PF + E \Leftrightarrow P + E + F \quad \cdots \quad P + E
\end{align*}
\]

Corresponding generalized mass action system has **exactly** the same governing dynamical equations!
There are now two graphs, \textit{stoichiometric} and \textit{kinetic}:

\[
\begin{align*}
\text{(S)} \quad \left\lbrace \begin{array}{c}
S + E + F \iff SE + F \\
\uparrow \quad \downarrow \\
PF + E \iff P + E + F
\end{array} \right. \\
\text{(K)} \quad \left\lbrace \begin{array}{c}
S + E \iff SE \\
\uparrow \quad \downarrow \\
PF \iff P + F
\end{array} \right.
\end{align*}
\]

\text{Generalized mass action system:}

\[
\dot{x} = \sum_{i=1}^{r} k_i (y_i' - y_i) \prod_{j=1}^{m} x_j^{\tilde{y}_{ij}}
\]

Note one-to-one correspondence between nodes in \textbf{(S)} and \textbf{(K)}!
There are now two graphs, *stoichiometric* and *kinetic*:

\[
\begin{align*}
\text{(S)} & \quad S + E + F \rightleftharpoons SE + F \\
& \quad \uparrow \quad \downarrow \\
& \quad PF + E \rightleftharpoons P + E + F \\
\text{(K)} & \quad S + E \rightleftharpoons SE \\
& \quad \uparrow \quad \downarrow \\
& \quad PF \rightleftharpoons P + F
\end{align*}
\]

Generalized mass action system:

\[
\dot{x} = \sum_{i=1}^{r} k_i (y'_i - y_i) \prod_{j=1}^{m} x_{ij}^{\tilde{y}_{ij}}
\]

Note one-to-one correspondence between nodes in (S) and (K)!
There are now two graphs, **stoichiometric** and **kinetic**:

\[\begin{align*}
(S) & \quad \begin{cases}
S + E + F & \Leftrightarrow SE + F \\
PF + E & \Leftrightarrow P + E + F
\end{cases} \\
(K) & \quad \begin{cases}
S + E & \Leftrightarrow SE \\
PF & \Leftrightarrow P + F
\end{cases}
\end{align*} \]

Generalized mass action system:

\[
\dot{x} = \sum_{i=1}^{r} k_i \left(y_i' - y_i \right) \prod_{j=1}^{m} x_j^{\tilde{y}_{ij}}
\]

Note one-to-one correspondence between nodes in \((S)\) and \((K)\)!
We have the following properties:

1. Steady states are complex-balanced (in generalized network)
2. Characterization: $$\tilde{K}_i x^{\tilde{y}_j} - \tilde{K}_j x^{\tilde{y}_i} = 0$$
3. Parametrization: $$\ln(x) - \ln(x^*) \in \tilde{S}^\perp$$
4. $$\tilde{K}_i, \tilde{y}_i, \text{ and } \tilde{S}^\perp$$ come from generalized network!

Stability and **uniqueness** of steady states are lost (ongoing work)
1 Background
- Overview
- Mass Action Systems

2 Classical Results
- Deficiency Zero Theorem
- Enzymatic Futile Cycle
- Generalized Reaction Networks

3 Outlook
- EnvZ/OmpR Signaling Pathway
- Wnt Signaling Pathway
- Summary and Future Work
What we know so far:

- **GMAS theory** is developing (Müller & Regensburger, [7, 8]).
- Process for generating GMAS known as network translation (Johnston, [9, 10])
What we know so far:

- **GMAS theory** is developing (Müller & Regensburger, [7, 8]).
- Process for generating GMAS known as **network translation** (Johnston, [9, 10])

What happens in actual biochemical networks?

- Generalized network can be **well connected** (great!)
- Generalized network can be **crowded** (resolvable?)
- Generalized network can be **sparse** (???)
EnvZ/OmpR signaling pathway: (Shinar & Feinberg, 2010 [11])

\[
\begin{align*}
XD & \Leftrightarrow X \rightarrow XT \rightarrow X_p \\
X_p + Y & \rightarrow X_pY \rightarrow X + Y_p \\
XT + Y_p & \rightarrow XTY_p \rightarrow XT + Y \\
XD + Y_p & \rightarrow XDY_p \rightarrow XD + Y
\end{align*}
\]

where $X = \text{EnvZ}$, $Y = \text{OmpR}$, $D = \text{ADP}$, $T = \text{ATP}$, and $p = \text{phosphate group}$.
EnvZ/OmpR signaling pathway: (Shinar & Feinberg, 2010 [11])

\[
\begin{align*}
XD & \Leftrightarrow X \rightarrow XT \rightarrow X_p \quad (+XD + XT + Y) \\
X_p + Y & \rightarrow X_pY \rightarrow X + Y_p \quad (+XD + XT) \\
XT + Y_p & \rightarrow XTY_p \rightarrow XT + Y \quad (+XD + X) \\
XD + Y_p & \rightarrow XDY_p \rightarrow XD + Y \quad (+X + XT)
\end{align*}
\]

where $X = \text{EnvZ}$, $Y = \text{OmpR}$, $D = \text{ADP}$, $T = \text{ATP}$, and $p = \text{phosphate group}$.
EnvZ/OmpR signaling pathway: (Shinar & Feinberg, 2010 [11])

\[
\begin{align*}
XD & \Leftrightarrow X \rightarrow XT \rightarrow X_p \\
X_p + Y & \rightarrow X_pY \rightarrow X + Y_p \\
XT + Y_p & \rightarrow XTY_p \rightarrow XT + Y \\
XD + Y_p & \rightarrow XDY_p \rightarrow XD + Y
\end{align*}
\]

where $X = \text{EnvZ}$, $Y = \text{OmpR}$, $D = \text{ADP}$, $T = \text{ATP}$, and $p = \text{phosphate group}$.
Generalized reaction network:

\[
\begin{align*}
(N4) \quad & 2XD + XT + Y \rightleftharpoons XD + X + XT + Y \longrightarrow XD + 2XT + Y \\
& \quad \uparrow \quad \updownarrow \\
& \quad X + XT + XDY_p \quad XD + X + XTY_p \quad XD + XT + X_p + Y \\
& \quad \downarrow \quad \uparrow \quad \updownarrow \\
& \quad XD + X + XT + Y_p \leftarrow XD + XT + X_p Y
\end{align*}
\]
Generalized reaction network:

\[
\begin{align*}
(\text{N4}) \quad \left\{
\begin{array}{l}
2XD + XT + Y & \iff XD + X + XT + Y & \longrightarrow & XD + 2XT + Y \\
X + XT + XD Y_p & & & XD + X + XT Y_p \\
& & & XD + XT + X_p + Y \\
& & & XD + X + XT + Y_p & \iff & XD + XT + X_p Y
\end{array}
\right.
\end{align*}
\]

Note:

Network is weakly reversible and deficiency zero **BUT** we still have to assign kinetic complexes.
Stoichiometric and kinetic graphs:

\[
\begin{align*}
2XD + XT + Y & \iff XD + X + XT + Y \rightarrow XD + 2XT + Y \\
\text{(S)} & \\
X + XT + XDY_p & \quad XD + X + XTY_p & XD + XT + X_p + Y
\end{align*}
\]

\[
\begin{align*}
XD & \iff X \rightarrow XT \\
\text{(K)} & \\
XDY_p & \quad XTY_p & X_p + Y
\end{align*}
\]

\[
\begin{align*}
\left\{ XD + Y_p \right\} & \quad \{ XT + Y_p \} \leftarrow X_p Y
\end{align*}
\]

Mapping between complexes is not one-to-one \(\Longrightarrow\) crowded network.
Stoichiometric and kinetic graphs:

\[
\begin{align*}
\text{(S)} & \quad \begin{cases}
2XD + XT + Y \rightleftharpoons XD + X + XT + Y \quad \rightarrow \quad XD + 2XT + Y \\
X + XT + XDY_p \quad XD + X + XTY_p \quad XD + XT + X_p + Y \\
XD + X + XT + Y_p \leftarrow XD + XT + X_p Y
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{(K)} & \quad \begin{cases}
XD \rightleftharpoons X \quad \rightarrow \quad XT \\
XDY_p \quad XTY_p \quad X_p + Y \\
\{XD + Y_p\} \quad \{XT + Y_p\} \leftarrow X_p Y
\end{cases}
\end{align*}
\]

Mapping between complexes is not one-to-one \implies crowded network.
Question:
When can overlaps in kinetic complexes be “resolved”?

Overlap may be resolved if generalized network satisfies:

1. a subspace inclusion condition; and
2. a technical graph theoretical condition.

Steady states may be characterized after a rescaling of the rates!
Network is **resolvable** (Johnston, [9]) at steady state

\[
x_{XD} \cdot x_{Y_p} = \left(\frac{x_{XD}}{x_{XT}}\right) x_{XT} \cdot x_{Y_p} = \left(\frac{k_2 k_4}{k_1 k_3}\right) x_{XT} \cdot x_{Y_p}
\]

Final restructured (and reweighted) reaction network:

\[
(N4) \begin{cases}
2XD + XT + Y \xrightleftharpoons[2]{k_1} XD + X + XT + Y \xrightarrow{k_3} XD + 2XT + Y \\
X + XT + XDY_p \xleftarrow[k_9(k_2 k_4/k_1 k_3)]{k_10} X + X + XTY_p \\
XD + X + XT + Y_p \xleftarrow[k_6]{k_5} XD + XT + X_p Y
\end{cases}
\]
Network is **resolvable** (Johnston, [9]) at steady state

\[x_{XD} \cdot x_{Y_p} = \left(\frac{x_{XD}}{x_{XT}} \right) x_{XT} \cdot x_{Y_p} = \left(\frac{k_2 k_4}{k_1 k_3} \right) x_{XT} \cdot x_{Y_p} \]

Final restructured (and reweighted) reaction network:

\[(N4) \begin{cases}
2XD + XT + Y \xrightarrow{k_1, k_2} XD + X + XT + Y \xrightarrow{k_3} XD + 2XT + Y \\
X + XT + XDY_p \xrightarrow{k_7} XD + X + XTY_p \xrightarrow{k_4} XD + XT + X_p + Y \\
XD + X + XT + Y_p \xleftarrow{k_6} XD + XT + X_p Y
\end{cases}\]
Network is **resolvable** (Johnston, [9]) at steady state

\[x_{XD} \cdot x_{Y_p} = \left(\frac{x_{XD}}{x_{XT}} \right) x_{XT} \cdot x_{Y_p} = \left(\frac{k_2 k_4}{k_1 k_3} \right) x_{XT} \cdot x_{Y_p} \]

Final restructured (and reweighted) reaction network:

\[
\begin{align*}
(N4) \quad \begin{cases}
2XD + XT + Y & \xrightarrow{k_1} XD + X + XT + Y & \xrightarrow{k_3} XD + 2XT + Y \\
X + XT + XDY_p & \xrightarrow{k_9} XD + X + XTY_p & \xrightarrow{k_5} XD + XT + Xp + Y \\
XD + X + XT + Y_p & \xrightarrow{k_6} XD + XT + XpY
\end{cases}
\end{align*}
\]

But many networks **DO NOT** satisfy these technical conditions...
Shuttled Wnt Signaling Pathway: (Gross et al. [12])

\[
\begin{align*}
(1) \quad & E_i \leftrightarrow E_a \leftrightarrow E_a^{(n)}, \quad P^{(n)} + G_i^{(n)} \leftrightarrow G_a^{(n)}, \quad D_i \leftrightarrow D_i^{(n)} \\
& D_a + E_a \leftrightarrow D_a E_a \rightarrow D_i + E_a \\
(2) \quad & D_i + F_a \leftrightarrow D_i F_a \rightarrow D_a + F_a \\
& D_a^{(n)} + E_a^{(n)} \leftrightarrow D_a^{(n)} E_a^{(n)} \rightarrow D_i^{(n)} + E_a^{(n)} \\
& D_i^{(n)} + F_a^{(n)} \leftrightarrow D_i^{(n)} F_a^{(n)} \rightarrow D_a^{(n)} + F_a^{(n)} \\
& D_a + P \leftrightarrow D_a P \rightarrow D_a, \quad P \leftrightarrow P^{(n)} \\
& D_a^{(n)} + P^{(n)} \leftrightarrow D_a^{(n)} P^{(n)} \rightarrow D_a^{(n)}, \quad \emptyset
\end{align*}
\]
Shuttled Wnt Signaling Pathway: (Gross et al. [12])

\[
\begin{align*}
(1) & \quad E_i \xleftrightarrow{\text{input}} E_a \xrightarrow{} E_a^{(n)}, \quad P^{(n)} + G_i^{(n)} \xleftrightarrow{} G_a^{(n)}, \quad D_i \xleftrightarrow{} D_i^{(n)} \\
& \quad D_a + E_a \xleftrightarrow{} D_aE_a \xrightarrow{} D_i + E_a \\
(2) & \quad D_i + F_a \xleftrightarrow{} D_iF_a \xrightarrow{} D_a + F_a \\
& \quad D_a^{(n)} + E_a^{(n)} \xleftrightarrow{} D_a^{(n)}E_a^{(n)} \rightarrow D_i^{(n)} + E_a^{(n)} \\
(3) & \quad D_i^{(n)} + F_a^{(n)} \xleftrightarrow{} D_i^{(n)}F_a^{(n)} \rightarrow D_a^{(n)} + F_a^{(n)} \\
& \quad D_a + P \xleftrightarrow{} D_aP \xrightarrow{} D_a, \quad P \xleftrightarrow{} P^{(n)} \\
& \quad D_a^{(n)} + P^{(n)} \xleftrightarrow{} D_a^{(n)}P^{(n)} \rightarrow D_a^{(n)}, \quad \emptyset
\end{align*}
\]
Kinetic Graph:

(1) $E_i \iff E_a \iff E_a^{(n)}$, \quad $P^{(n)} + G_i \iff G_a$, \quad $D_i \iff D_i^{(n)}$

(2) \begin{align*}
D_a + E_a & \iff D_a E_a \\
D_i F_a & \iff D_i + F_a
\end{align*}

(3) \begin{align*}
D_a^{(n)} + E_a^{(n)} & \iff D_a^{(n)} E_a^{(n)} \\
D_i^{(n)} F_a^{(n)} & \iff D_i^{(n)} + F_a^{(n)}
\end{align*}

(4) \begin{align*}
\left\{ \begin{array}{c} P \\ P + D_a \end{array} \right\} & \iff \left\{ \begin{array}{c} P^{(n)} \\ P^{(n)} + D_a^{(n)} \end{array} \right\} \\
D_a P & \iff \emptyset \iff D_a^{(n)} P^{(n)}
\end{align*}
Kinetic Graph:

(1) \[E_i \iff E_a \iff E_a^{(n)}, \quad P^{(n)} + G_i \iff G_a, \quad D_i \iff D_i^{(n)} \]

(2) \[
\begin{align*}
D_a + E_a & \iff D_aE_a \\
D_iF_a & \iff D_i + F_a
\end{align*}
\]

(3) \[
\begin{align*}
D_a^{(n)} + E_a^{(n)} & \iff D_a^{(n)}E_a^{(n)} \\
D_i^{(n)}F_a^{(n)} & \iff D_i^{(n)} + F_a^{(n)}
\end{align*}
\]

(4) \[
\begin{align*}
P & \iff P + D_a \\
P + D_a & \iff P^{(n)} + D_a^{(n)}
\end{align*}
\]

\[
\begin{align*}
D_aP & \iff \emptyset & \emptyset & \iff D_a^{(n)}P^{(n)}
\end{align*}
\]
PROBLEM!

This network is crowded and the crowded vertex cannot be resolved!

- We would still like to characterize the steady state set.
- Preliminary results suggest considering subnetworks:
 - Stoichiometry balances across crowded vertices
 - Steady state ideal found by balancing subnetworks
Kinetic Graph:

\[E_i \iff E_a \iff E_a^{(n)}, \quad P^{(n)} + G_i \iff G_a, \quad D_i \iff D_i^{(n)} \]

\[D_a + E_a \iff D_a E_a \]

\[D_i F_a \iff D_i + F_a \]

\[\{ \begin{array}{l} P \\ P + D_a \end{array} \} \iff \{ \begin{array}{l} P^{(n)} \\ P^{(n)} + D_a^{(n)} \end{array} \} \]

\[D_a P \iff \emptyset \iff D_a^{(n)} P^{(n)} \]
Kinetic Graph:

\[
\begin{align*}
\text{(1)} & \quad E_i & \rightleftharpoons E_a & \rightleftharpoons E_a^{(n)}, \quad P^{(n)} + G_i & \rightleftharpoons G_a, \quad D_i & \rightleftharpoons D_i^{(n)} \\
\text{(2)} & \quad D_a + E_a & \rightleftharpoons D_a E_a \\
\text{(3)} & \quad D_a^{(n)} + E_a^{(n)} & \rightleftharpoons D_a^{(n)} E_a^{(n)} \\
\text{(4)} & \quad \left\{ \begin{array}{c} P \\ P + D_a \end{array} \right\} & \rightleftharpoons \left\{ \begin{array}{c} P^{(n)} \\ P^{(n)} + D_a^{(n)} \end{array} \right\} \\
\end{align*}
\]
Kinetic Graph:

(1) \[E_i \rightleftharpoons E_a \rightleftharpoons E_a^{(n)}, \quad P^{(n)} + G_i \rightleftharpoons G_a, \quad D_i \rightleftharpoons D_i^{(n)} \]

(2) \[
\begin{align*}
D_a + E_a & \rightleftharpoons D_a E_a \\
D_i F_a & \rightleftharpoons D_i + F_a
\end{align*}
\]

(3) \[
\begin{align*}
D_a^{(n)} + E_a^{(n)} & \rightleftharpoons D_a^{(n)} E_a^{(n)} \\
D_i^{(n)} F_a^{(n)} & \rightleftharpoons D_i^{(n)} + F_a^{(n)}
\end{align*}
\]

(4) \[
\begin{align*}
\{ P \} & \rightleftharpoons \{ P^{(n)} \} \\
\{ P + D_a \} & \rightleftharpoons \{ P^{(n)} + D_a^{(n)} \} \\
D_a P & \rightarrow \emptyset \leftarrow D_a^{(n)} P^{(n)}
\end{align*}
\]
Kinetic Graph:

(1) \[E_i \rightleftharpoons E_a \rightleftharpoons E_a^{(n)}, \quad P^{(n)} + G_i \rightleftharpoons G_a, \quad D_i \rightleftharpoons D_i^{(n)} \]

(2) \[\begin{align*}
D_a + E_a & \rightleftharpoons D_a E_a \\
D_i F_a &= \rightleftharpoons D_i + F_a
\end{align*} \]

(3) \[\begin{align*}
D_a^{(n)} + E_a^{(n)} & \rightleftharpoons D_a^{(n)} E_a^{(n)} \\
D_i^{(n)} F_a^{(n)} &= \rightleftharpoons D_i^{(n)} + F_a^{(n)}
\end{align*} \]

(4) \[\begin{align*}
\{ P \} & \rightleftharpoons \{ P^{(n)} \} \\
\{ P + D_a \} & \rightleftharpoons \{ P^{(n)} + D_a^{(n)} \} \\
D_a P & \rightarrow \emptyset \rightarrow D_a^{(n)} P^{(n)}
\end{align*} \]
Summary of Approach:

- Correspond a biochemical reaction network to a **generalized network** with better structure (weak reversibility).

- Generalized network has **two sets of complexes** for each vertex (Müller & Regensburger, 2012 [7]).

- Method of **network translation** makes such a correspondence (Johnston, 2014 [9]).

- Recent work also **algorithmizes** the process of network translation (Johnston, 2015 [10]).
Future Work:

- Develop generalized mass action system theory to include:

 1. **More varied behaviors** (e.g. multistationarity, persistence, steady state stability, long-term dynamics, etc.)

 2. **Non-traditional embeddings** of kinetic complexes in the reaction graph (e.g. crowded and sparse embeddings)

- Expand scope of application (Conradi and Shiu, 2014 [13])
Thank you!
Selected Bibliography:

