Section 1: Definitions

1. A linear system $A \cdot x = b$ is **inconsistent** if...

2. An $n \times n$ matrix A is **invertible/nonsingular** if...

3. The **determinant** of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is...

4. A set W is a **subspace** of \mathbb{R}^n if...

5. Consider a set of vectors $S = \{v_1, \ldots, v_m\}$ where $v_i \in \mathbb{R}^n$. Then:

 (a) A vector $v \in \mathbb{R}^n$ is a **linear combination** of the vectors in S if...

 (b) The **span** of S is...

 (c) The set S is **linearly independent** if...

 (d) The set S is a **basis** for the subspace $W \subseteq \mathbb{R}^n$ if...

6. The **row space** of an $m \times n$ matrix A is...

7. The **column space** of an $m \times n$ matrix A is...

8. The **null space** of an $m \times n$ matrix A is...

9. The value $\lambda \in \mathbb{C}$ and vector $v \in \mathbb{C}^n$ are an **eigenvalue/eigenvector** pair of the $n \times n$ matrix A if...

Section 2: Proofs

1. Consider three vectors $v_1, v_2, v_3 \in \mathbb{R}^3$. Prove that, if $v_3 \in \text{span}\{v_1, v_2\}$, then $\text{span}\{v_1, v_2\} = \text{span}\{v_1, v_2, v_3\}$.
2. Prove that, for any $m \times n$ matrix A, $\text{null}(A)$ is a subspace of \mathbb{R}^n.

3. Consider a 2×2 matrix A which has two real and distinct eigenvalues λ_1 and λ_2. Show that the corresponding eigenvectors v_1 and v_2 are linearly independent.

4. Show that λ is an eigenvalue of an invertible matrix A if and only if λ^{-1} is an eigenvalue of A^{-1}.