Math 133A, Term Test II:
Study Guide

1. The second term test of the semester will take place in class time on
 Wednesday, April 13 (12:00-1:15 p.m. in Sci 142). Please arrive on
time!

2. The test will cover the material **since the last term test** (i.e. it is not cumulative).
 Specifically, you will be tested on material from
 Weeks 5 through 10. This includes second-order equations, harmonic
 motion, resonance, and a quick introduction to linear algebra (which
 we will begin covering this coming week).

3. You will be permitted a **one-page cheat sheet** but **no calculators**.
 You may put whatever you want on the cheat sheet and write on
 the front and back if you like. Again, I would recommend you treat
 creating the study sheet as a study exercise. It is an opportunity to go
 through the notes and summarize the most important points, or the
 material with which you have struggled the most.

4. Study materials have been posted on the course website and also on
 WebAssign. There are far more questions than can be reasonably
 expected to be completed prior to the test; however, the questions are
 representative of what you should expect to find on the test.

5. **The test will contain questions on resonance**! Please do not
 neglect to study these problems, and in particular the homework ques-
 tions on resonance for damped mechanisms.

6. The test will include exactly **one of three proofs** from the online
 notes:

 (a) The proof that, if y_1 and y_2 are solutions of $y'' + p(x)y' + q(x)y = 0$
 then $y = C_1y_1 + C_2y_2$ is a solution. (Week 5 notes)

 (b) The proof that, if $ar^2 + br + c = 0$ has a repeated root r, then the
 corresponding solution of $ay'' + by' + cy = 0$ is $y(x) = C_1e^{rx} +
 C_2xe^{rx}$. (Week 6 notes)

 (c) The proof that $y = y_c + y_p$ is the general solution of $y'' + p(x)y' +
 q(x)y = g(x)$, where y_c solves $y''_c + p(x)y'_c + q(x)y_c = 0$ and y_p
 solves $y''_p + p(x)y'_p + q(x)y_p = g(x)$. (Week 7 notes)