Determining the inverse Laplace transform of $F(s)$ will commonly involve partial fraction decomposition. We quickly review the steps for attaining the correct form for expansion.

Algorithm 1

Consider a function $F(s) = \frac{f(s)}{g(s)}$ where f and g are polynomials, i.e. $f(s) = a_0 + a_1s + \cdots + a_ms^m$ and $g(s) = b_0 + b_1s + \cdots + b_ns^n$ ($m < n$).

The appropriate steps for obtaining the partial fraction decomposition are the following:

1. Fully factor $g(s)$. The Fundamental Theorem of Algebra guarantees that any polynomial can be factored uniquely into chains of terms of one of two forms:

 $$(as + b)^n \quad \text{or} \quad (as^2 + bs + c)^n.$$

 Every polynomial with a power of 3 of higher can be factored!

2. For every term of the form $(as + b)^n$ in $g(s)$, add the following chain of terms

 $$\frac{A_1}{as + b} + \frac{A_2}{(as + b)^2} + \cdots + \frac{A_n}{(as + b)^n} \quad (1)$$

 on the right-hand side. For every term of the form $(as^2 + bs + c)^n$, add the following chain

 $$\frac{B_1s + C_1}{as^2 + bs + c} + \frac{B_2s + C_2}{(as^2 + bs + c)^2} + \cdots + \frac{B_ns + C_n}{(as^2 + bs + c)^n} \quad (2)$$

Note that if $n = 1$, we only add a single term.
Example 1

Set up the partial fraction expansion of
\[
\frac{1}{(s-1)(2s+3)^3(s^2+s+1)^2(3s^2-s+3)}.
\]
Do not evaluate for the constants!

Solution: This is a straight forward application of (1) and (2). We have
\[
\frac{1}{(s-1)(2s+3)^3(s^2+s+1)^2(3s^2-s+3)} = \frac{A}{s-1} + \frac{B}{2s+3} + \frac{C}{(2s+3)^2} + \frac{D}{(2s+3)^3} + \frac{Es+F}{s^2+s+1} + \frac{Gs+H}{(s^2+s+1)^2} + \frac{Is+J}{3s^2-s+3}.
\]

Example 2

Perform partial fraction decomposition on the following:
\[
F(x) = \frac{s^2+1}{s^3-1}.
\]

Solution: Since \(g(s) = s^3-1\) is third order, it can be factored. In this case, we have the obvious root \(s = 1\) so that \((s-1)\) is a factor. We could also apply difference of cubes. We have
\[
\frac{s^2+1}{s^3-1} = \frac{s^2+1}{(s-1)(s^2+s+1)}.
\]
We set-up our partial fraction decomposition for three variables \(A\), \(B\), and \(C\) so that
\[
\frac{s^2+1}{(s-1)(s^2+s+1)} = \frac{A}{s-1} + \frac{Bs+C}{s^2+s+1}.
\]
Multiplying across by the denominator on the left-hand side we arrive at the more manageable form

\[s^2 + 1 = A(s^2 + s + 1) + (Bs + C)(s - 1). \]

In order for our partial fraction decomposition to be valid, the above expression must hold for all values of \(s \). This suggests two alternative methods of solving for the constants.

1. Plug values of \(s \) into the equation until you have enough expressions to solve for the variables. Particularly useful values of \(s \) are those which eliminate brackets (e.g. if \((s - 2)\) appears factored several times, select \(s = 2 \)).

2. Collect powers of \(s \) on the right-hand side and then equate coefficients on the left-hand and right-hand side.

For illustrative purposes, we will perform both methods here. To the first method, we select the values \(s = 0 \), \(s = 1 \) and \(s = -1 \). Plugging \(s = 0 \) into the expression, we have \(1 = A - C \) which implies \(C = A - 1 \). Plugging in \(s = 1 \) gives \(2 = 3A \) which implies \(A = \frac{2}{3} \), and therefore that \(C = -\frac{1}{3} \). Plugging in \(s = -1 \) gives \(2 = A - 2C + 2B \). We can plug in our known values of \(A \) and \(C \) and solve for \(B \) to get \(B = \frac{1}{3} \).

Alternatively, we can expand our original expression to get

\[s^2 + 1 = (A + B)s^2 + (A - B + C)s + (A - C). \]

Equating the coefficients of the \(s \) terms on the left-hand and right-hand side (realizing that \(s^2 + 1 = (1)s^2 + (0)s + (1) \)) gives the system of equations

\[
\begin{align*}
A + B &= 1 \\
A - B + C &= 0 \\
A - C &= 1.
\end{align*}
\]

For those who are familiar with matrix analysis, this can be solved through row reduction. Otherwise, we back substitute variables to get \(C = A - 1 \) \(\Rightarrow\) \(A - B + C = 2A - B = 1 \) \(\Rightarrow\) \(B = 2A - 1 \) \(\Rightarrow\) \(A + B = 3A = 2 \) \(\Rightarrow\) \(A = \frac{2}{3} \) \(\Rightarrow\) \(B = \frac{1}{3} \) \(\Rightarrow\) \(C = -\frac{1}{3} \).
We put this together to get

$$\frac{s^2 + 1}{(s - 1)(s^2 + s + 1)} = \frac{2}{3(s - 1)} + \frac{s - 1}{3(s^2 + s + 1)}.$$